摘要
Indium oxide supported nickel catalyst has been experimentally confirmed to be highly active for CO_(2) hydrogenation towards methanol.In this work,the reaction mechanism for CO_(2) hydrogenation to methanol has been investigated on a model Ni/In_(2)O_(3) catalyst,i.e.,Ni_(4)/In_(2)O_(3),via the density functional theory(DFT)study.Three possible reaction pathways,i.e.,the formate pathway,CO hydrogenation and the reverse water-gas-shift(RWGS)pathways,have been examined on this model catalyst.It has been demonstrated that the RWGS pathway is the most theoretically-favored for CO_(2) hydrogenation to methanol.The complete RWGS pathway follows CO_(2)+6 H→COOH+5 H→CO+H_(2)O+4 H→HCO+H_(2)O+3 H→H_(2)CO+H_(2)O+2 H→H_(3)CO+H_(2)O+H→H_(3)COH+H_(2) O.Furthermore,it has been also proved that the interfacial oxygen vacancy can serve as the active site for boosting the CO_(2) adsorption and charge transfer between the nickel species and indium oxide,which synergistically promotes the consecutive CO_(2) hydrogenation towards methanol.
基金
supported by the National Natural Science Foundation of China (Nos. 21536008 and 21621004).
作者简介
Corresponding authors:Donghai Mei,E-mail addresses:dhmei@tiangong.edu.cn;Corresponding authors:Chang-jun Liu,cjL@tju.edu.cn。