期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost 被引量:4
1
作者 Haibin Huang Gangyu Tian +6 位作者 Lang Zhou Jiren Yuan Wolfgang R.Fahrner Wenbin Zhang Xingbing Li Wenhao Chen Renzhong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期520-525,共6页
A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material c... A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost. 展开更多
关键词 silicon solar cell a-Si:H/c-Si heterojunction short-circuit current
在线阅读 下载PDF
Performance of n-type silicon/silver composite anode material in lithium ion batteries: A study on effect of work function matching degree 被引量:1
2
作者 Guo-Jun Xu Chen-Xin Jin +6 位作者 Kai-Jie Kong Xi-Xi Yang Zhi-Hao Yue Xiao-Min Li Fu-Gen Sun Hai-Bin Huang Lang Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期607-611,共5页
In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-typ... In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-type 1-Ω·cm Si particles(nl-Ag) and Ag-deposited n-type 0.001-Ω·cm Si particles(n0.001-Ag) are separately used as an anode material to assemble coin cells,of which the electrochemical performances are investigated. For the matching of work function between n-type 1-Ω·cm Si(nl) and Ag, nl-Ag shows discharge specific capacity of up to 683 mAh·g^-1 at a current density of 8.4 A·g^-1, which is40% higher than that of n0.001-Ag. Furthermore, the resistivity of nl-Ag is lower than half that of n0.001-Ag. Due to the mismatch of work function between n-type 0.001-Ω·cm Si(n0.001) and Ag, the discharge specific capacity of n0.001-Ag is 250.2 mAh·g^-1 lower than that of nl-Ag after 100 cycles. 展开更多
关键词 lithium ion battery silicon anode materials work function matching CONTACTS
在线阅读 下载PDF
Optical simulation of external quantum efficiency spectra of CuIn_(1-x)Ga_xSe_2 solar cells from spectroscopic ellipsometry inputs
3
作者 Abdel-Rahman A.Ibdah Prakash Koirala +5 位作者 Puruswottam Aryal Puja Pradhan Michael J.Heben Nikolas J.Podraza Sylvain Marsillac Robert W.Collins 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1151-1169,共19页
Applications of in-situ and ex-situ spectroscopic ellipsometry (SE) are presented for the development of parametric expressions that define the real and imaginary parts (ε1, ε2) of the complex dielectric functio... Applications of in-situ and ex-situ spectroscopic ellipsometry (SE) are presented for the development of parametric expressions that define the real and imaginary parts (ε1, ε2) of the complex dielectric function spectra of thin film solar cell components. These spectra can then be utilized to analyze the structure of complete thin film solar cells. Optical and structural/compositional models of complete solar cells developed through least squares regression analysis of the SE data acquired for the complete cells enable simulations of external quantum efficiency (EQE) without the need for variable parameters. Such simulations can be compared directly with EQE measurements. From these comparisons, it becomes possible to understand in detail the origins of optical and electronic gains and losses in thin film photovoltaics (PC) technologies and, as a result, the underlying performance limitations. In fact, optical losses that occur when above-bandgap photons are not absorbed in the active layers can be distinguished from electronic losses when electron-hole pairs generated in the active layers are not collected. This overall methodology has been applied to copper indium-gallium diselenide (Culn1-xGaxSe2; CIGS) solar cells, a key commercialized thin film PV technology. CIGS solar cells with both standard thickness (〉2 μm) and thin (〈1 μm) absorber layers are studied by applying SE to obtain inputs for EQE simulations and enabling comparisons of simulated and measured EQE spectra. SE data analysis is challenging for CIGS material components and solar cells because of the need to develop an appropriate (ε1, ε2) database for the CIGS alloys and to extract absorber layer Ga profiles for accurate structural/compositional models. For cells with standard thickness absorbers, excellent agreement is found between the simulated and measured EQE, the latter under the assumption of 100% collection from the active layers, which include the CIGS bulk and CIGS/CdS heterojunction interface layers. For cells with thin absorbers, however, an observed difference between the simulated and measured EQE can be attributed to losses via carrier recombination within a- 0.15 μm thickness of CIGS adjacent to the Mo back contact. By introducing a carrier collection probability profile into the simulation, much closer agreement is obtained between the simulated and measured EQE. In addition to the single spot capability demonstrated in this study, ex-situ SE can be applied as well to generate high resolution maps of thin film multilayer structure, component layer properties and their profiles, as well as short-circuit current density predictions. Such mapping is possible due to the high measurement speed of 〈1 s per ( , 4) spectra achievable by the multichannel ellipsometer. 展开更多
关键词 Solar cells Thin-film ELLIPSOMETRY SPECTROSCOPIC Culn1-xGaxSe2(CIGS) Optical properties Quantum efficiency External Simulation SOLAR-CELL
在线阅读 下载PDF
Homogenizing the sulfonic acid distribution of DMF-modified PEDOT:PSS films and perovskite solar cells
4
作者 Hongliang Li Cuiling Zhang +3 位作者 Yunping Ma Zhiqiang Li Ying Xu Yaohua Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期71-77,共7页
Inverted perovskite solar cells using pristine PEDOT:PSS as the hole-transporting layer (HTL) have been widely studied for its less hysteresis and low-temperature preparation technologies. However, this device suffers... Inverted perovskite solar cells using pristine PEDOT:PSS as the hole-transporting layer (HTL) have been widely studied for its less hysteresis and low-temperature preparation technologies. However, this device suffers from an inferior open-circuit voltage (VOC) and stability problems. Several attempts have made on film formation and interface engineering to improve the efficiency. Modification proved beneficial to decrease energy offset at the interface between the HTL layer and the adjacent perovskite layer. In this paper, modification PEDOT:PSS layers were realized with a dimethyl formamide (DMF) solvent. The sulfonic acid distribution was homogenized in the normal directi on after modification. The work function of the modified PEDOT:PSS layers increased from 4.71 to 5.07eV, and the conductivity of modified PEDOT:PSS increased from 3×10^-4 to 0.45 S/cm. The as-deposited perovskite films were more uniform with larger grain sizes and less pinholes, resulting in an improved VOC from 0.93 to 1.048 V, while the efficiency was increased from 11.5% to 16.8%. Solar cells without encapsulation under the 50 h and 50% humidity aging test showed 7% degradation of fill factor (FF) with 50 v/v% PEDOT:PSS layer, while the fill factor decreased 11.2% in the 0 v/v% PEDOT:PSS layer, respectively. 展开更多
关键词 MODIFICATION HYSTERESIS INVERTED PEROVSKITE solar cells (PSCs)
在线阅读 下载PDF
Simulation of a-Si:H/c-Si heterojunction solar cells: From planar junction to local junction
5
作者 Haibin Huang Lang Zhou +1 位作者 Jiren Yuan Zhijue Quan 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期370-377,共8页
In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with lo... In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p–n structure(HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT(heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD(heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells.The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 m A/cm^2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to(1) decrease of optical absorption loss of a-Si:H and(2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide(TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost. 展开更多
关键词 silicon solar cell a-Si:H/c-Si heterojunction short-circuit current local junction
在线阅读 下载PDF
Enhanced near-infrared responsivity of silicon photodetector by the impurity photovoltaic effect
6
作者 袁吉仁 黄海宾 +3 位作者 邓新华 梁晓军 周耐根 周浪 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期521-524,共4页
The near-infrared responsivity of a silicon photodetector employing the impurity photovoltaic (IPV) effect is investigated with a numerical method. The improvement of the responsivity can reach 0.358 A/W at a wavele... The near-infrared responsivity of a silicon photodetector employing the impurity photovoltaic (IPV) effect is investigated with a numerical method. The improvement of the responsivity can reach 0.358 A/W at a wavelength of about 1200 nm, and its corresponding quantum efficiency is 41.1%. The origin of the enhanced responsivity is attributed to the absorption of sub-bandgap photons, which results in the carrier transition from the impurity energy level to the conduction band. The results indicate that the IPV effect may provide a general approach to enhancing the responsivity of photodetectors. 展开更多
关键词 impurity photovoltaic effect RESPONSIVITY PHOTODETECTOR
在线阅读 下载PDF
Low-temperature phase transformation of CZTS thin films
7
作者 赵蔚 杜霖元 +8 位作者 刘林林 孙亚利 柳志伟 滕晓云 谢娟 刘匡 于威 傅广生 高超 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期325-329,共5页
The low temperature phase transformation in the Cu_2ZnSnS_4(CZTS) films was investigated by laser annealing and low temperature thermal annealing.The Raman measurements show that a-high-power laser annealing could c... The low temperature phase transformation in the Cu_2ZnSnS_4(CZTS) films was investigated by laser annealing and low temperature thermal annealing.The Raman measurements show that a-high-power laser annealing could cause a red shift of the Raman scattering peaks of the kesterite(KS) structure and promotes the formation of the partially disordered kesterite(PD-KS) structure in the CZTS films,and the low-temperature thermal annealing only shifts the Raman scattering peak of KS phase by several wavenumber to low frequency and the broads Raman peaks in the low frequency region.Moreover,the above two processes were reversible.The Raman analyses of the CZTS samples prepared under different process show that the PD-KS structure tends to be found at low temperatures and low sulfur vapor pressures.Our results reveal that the control of the phase structure in CZTS films is feasible by adjusting the preparation process of the films. 展开更多
关键词 Cu2ZnSnS4 (CZTS) films magnetron sputtering phase transformation
在线阅读 下载PDF
Molecular dynamics study of anisotropic growth of silicon
8
作者 周耐根 刘博 +2 位作者 张弛 李克 周浪 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期515-519,共5页
Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si(100),(110),(111), and(112) planes. The sequences of the ki... Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si(100),(110),(111), and(112) planes. The sequences of the kinetic coefficients and growth velocities are μ((100))〉 μ((110))〉 μ((112))〉 μ((111))and v((100))〉 v((110))〉 v((112))〉 v((111)), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However,they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid–liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si(111) plane. 展开更多
关键词 anisotropy growth kinetic coefficient silicon molecular dynamics
在线阅读 下载PDF
Control of epitaxial growth at a-Si:H/c-Si heterointerface by the working pressure in PECVD
9
作者 沈艳娇 陈剑辉 +7 位作者 杨静 陈兵兵 陈静伟 李峰 代秀红 刘海旭 许颖 麦耀华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期679-684,共6页
The epitaxial-Si(epi-Si) growth on the crystalline Si(c-Si) wafer could be tailored by the working pressure in plasmaenhanced chemical vapor deposition(PECVD).It has been systematically confirmed that the epitax... The epitaxial-Si(epi-Si) growth on the crystalline Si(c-Si) wafer could be tailored by the working pressure in plasmaenhanced chemical vapor deposition(PECVD).It has been systematically confirmed that the epitaxial growth at the hydrogenated amorphous silicon(a-Si:H)/c-Si interface is suppressed at high pressure(hp) and occurs at low pressure(1p).The hp a-Si:H,as a purely amorphous layer,is incorporated in the 1p-epi-Si/c-Si interface.We find that:(i) the epitaxial growth can also occur at a-Si:H coated c-Si wafer as long as this amorphous layer is thin enough;(ii) with the increase of the inserted hp layer thickness,lp epi-Si at the interface is suppressed,and the fraction of a-Si:H in the thin films increases and that of c-Si decreases,corresponding to the increasing minority carrier lifetime of the sample.Not only the epitaxial results,but also the quality of the thin films at hp also surpasses that at lp,leading to the longer minority carrier lifetime of the hp sample than the lp one although they have the same amorphous phase. 展开更多
关键词 epitaxial PECVD amorphous systematically crystalline coated lifetime wafer incorporated suppressed
在线阅读 下载PDF
Small molecule interfacial cross-linker for highly efficient two-dimensional perovskite solar cells
10
作者 Hongming Hou Taotao Hu +8 位作者 Fu Zhang Rui Liu Jialong He Chang Liu Yue Yu Dong Chen Qiaofeng Wu Meng Zhang Hua Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期35-41,共7页
The nonradiative recombination of charge carriers at the hole transport layer(HTL)/perovskite interface generally induces remarkable performance loss of the inverted two-dimensional perovskite solar cells(2D PSCs). He... The nonradiative recombination of charge carriers at the hole transport layer(HTL)/perovskite interface generally induces remarkable performance loss of the inverted two-dimensional perovskite solar cells(2D PSCs). Herein, a cross-linkable small molecule of 2-mercaptoimidazole(2-MI) was introduced into the nickel oxide(NiO_(x))/2D perovskite interface. Experiments have confirmed the formation of Ni-N covalent bond by N atom in the 2-MI and Ni in the NiO_(x) and the coordinating between S atom of 2-MI and under-coordinated Pb^(2+) near to the NiO_(x)/perovskite interface, which contributes to creating a crosslinking between NiO_(x)/perovskite interface to restrain charge carrier recombination and enhance the extraction of hole carriers at the interface. Besides, the 2-MI modification layer is also beneficial for promoting the crystallinity of 2D perovskite. Consequently, the inverted 2D PSCs with 2-MI modification achieved the best power conversion efficiency of 15%. This paves a route to acquire highly efficient 2D PSCs by constructing a cross-linking at the NiO_(x)HTL/2D perovskite interface. 展开更多
关键词 2D perovskite Perovskite solar cells Small molecule Interfacial cross-linking Nickel oxide
在线阅读 下载PDF
Photoemission cross section:A critical parameter in the impurity photovoltaic effect
11
作者 Jiren Yuan Haibin Huang +4 位作者 Xinhua Deng Zhihao Yue Yuping He Naigen Zhou Lang Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期552-556,共5页
A numerical study has been conducted to explore the role of photoemission cross sections in the impurity photovoltaic(IPV) effect for silicon solar cells doped with indium. The photovoltaic parameters(short-circuit... A numerical study has been conducted to explore the role of photoemission cross sections in the impurity photovoltaic(IPV) effect for silicon solar cells doped with indium. The photovoltaic parameters(short-circuit current density, opencircuit voltage, and conversion efficiency) of the IPV solar cell were calculated as functions of variable electron and hole photoemission cross sections. The presented results show that the electron and hole photoemission cross sections play critical roles in the IPV effect. When the electron photoemission cross section is 10^-20cm^2, the conversion efficiencyη of the IPV cell always has a negative gain(△η 0) if the IPV impurity is introduced. A large hole photoemission cross section can adversely impact IPV solar cell performance. The combination of a small hole photoemission cross section and a large electron photoemission cross section can achieve higher conversion efficiency for the IPV solar cell since a large electron photoemission cross section can enhance the necessary electron transition from the impurity level to the conduction band and a small hole photoemission cross section can reduce the needless sub-bandgap absorption. It is concluded that those impurities with small(large) hole photoemission cross section and large(small) electron photoemission cross section,whose energy levels are near the valence(or conduction) band edge, may be suitable for use in IPV solar cells. These results may help in judging whether or not an impurity is appropriate for use in IPV solar cells according to its electron and hole photoemission cross sections. 展开更多
关键词 solar cell impurity photovoltaic effect photoemission cross section conversion efficiency
在线阅读 下载PDF
Short Annealing:a Shortcut for Efficient Perovskite Solar Modules
12
作者 XIE Jiale 《材料导报》 EI CAS CSCD 北大核心 2020年第20期20003-20004,共2页
Photo of a minimodule and its electroluminescence in dark captured by an infrared responsive camera under a forward bias of 12 V.(b)The I-V curves of a small cell(8 mm 2)and a minimodule(21.5 cm 2)under AM1.5 illumina... Photo of a minimodule and its electroluminescence in dark captured by an infrared responsive camera under a forward bias of 12 V.(b)The I-V curves of a small cell(8 mm 2)and a minimodule(21.5 cm 2)under AM1.5 illumination.(c)The efficiency of a minimodule under different illumination intensity.(d)The V OC of devices as a function of illumination intensity with perovskite films annealed for 3 min during an aging period of 0 days,3 days,9 days,and 20 days.(e)XRD patterns of perovskites annealed for 3 min and 20 min before and after aging. 展开更多
关键词 AGING ILLUMINATION annealed
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部