摘要
In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-type 1-Ω·cm Si particles(nl-Ag) and Ag-deposited n-type 0.001-Ω·cm Si particles(n0.001-Ag) are separately used as an anode material to assemble coin cells,of which the electrochemical performances are investigated. For the matching of work function between n-type 1-Ω·cm Si(nl) and Ag, nl-Ag shows discharge specific capacity of up to 683 mAh·g^-1 at a current density of 8.4 A·g^-1, which is40% higher than that of n0.001-Ag. Furthermore, the resistivity of nl-Ag is lower than half that of n0.001-Ag. Due to the mismatch of work function between n-type 0.001-Ω·cm Si(n0.001) and Ag, the discharge specific capacity of n0.001-Ag is 250.2 mAh·g^-1 lower than that of nl-Ag after 100 cycles.
In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-type 1-Ω·cm Si particles(nl-Ag) and Ag-deposited n-type 0.001-Ω·cm Si particles(n0.001-Ag) are separately used as an anode material to assemble coin cells,of which the electrochemical performances are investigated. For the matching of work function between n-type 1-Ω·cm Si(nl) and Ag, nl-Ag shows discharge specific capacity of up to 683 mAh·g^-1 at a current density of 8.4 A·g^-1, which is40% higher than that of n0.001-Ag. Furthermore, the resistivity of nl-Ag is lower than half that of n0.001-Ag. Due to the mismatch of work function between n-type 0.001-Ω·cm Si(n0.001) and Ag, the discharge specific capacity of n0.001-Ag is 250.2 mAh·g^-1 lower than that of nl-Ag after 100 cycles.
基金
Project supported by the China Postdoctoral Science Foundation(Grant No.2016M592115)
the Jiangxi Postdoctoral Foundation,China(Grant No.2015KY12)
the Fund from the Jiangxi Provincial Education Department,China(Grant No.150184)
the Fund from Nanchang University,China(Grant No.CX2017006)
作者简介
Corresponding author. E-mail: yuezhihao@ncu.edu.cn