K hler流形间的全纯等距嵌入问题是多复变领域的热点问题之一。单项式多面体是Hartogs三角形的非平凡推广,研究其与复欧氏空间是否具有公共子流形是有意义的。借助Nash函数的性质及二维单项式多面体的Bergman核函数,得到具有Bergman度...K hler流形间的全纯等距嵌入问题是多复变领域的热点问题之一。单项式多面体是Hartogs三角形的非平凡推广,研究其与复欧氏空间是否具有公共子流形是有意义的。借助Nash函数的性质及二维单项式多面体的Bergman核函数,得到具有Bergman度量的二维单项式多面体与具有平坦度量的复欧氏空间不存在公共的K hler子流形,即二维单项式多面体与复欧氏空间是不相关的。展开更多