联邦学习(Federated learning,FL)通过分布式协同训练实现多车辆联合建模,在保护数据隐私的同时,有效支持车联网(Internet of vehicles,IoV)中的交通优化、拥堵治理等应用。然而,传统FL在动态异构的IoV环境中面临中心化架构脆弱和网络...联邦学习(Federated learning,FL)通过分布式协同训练实现多车辆联合建模,在保护数据隐私的同时,有效支持车联网(Internet of vehicles,IoV)中的交通优化、拥堵治理等应用。然而,传统FL在动态异构的IoV环境中面临中心化架构脆弱和网络不稳定等挑战。区块链技术的去中心化共识和不可篡改特性为IoV-FL提供了理想的解决方案。围绕区块链赋能下的IoV-FL展开综述,介绍IoV、区块链与IoV-FL的基础概念,分析IoV-FL的系统架构与关键应用场景,并梳理传统方法在隐私安全、系统鲁棒性与可扩展性等方面的局限;从模型更新验证、系统可扩展性、激励机制和知识共享4个维度,系统整理已有研究工作中区块链赋能IoV-FL的关键技术方案,探讨IoV-FL在隐私与安全、存储开销、网络吞吐率、设备与数据异构等方面仍面临的关键挑战;最后,从隐私保护增强、资源利用优化以及系统协同等方面展望未来研究方向。展开更多
针对现有的类案检索(LCR)方法缺乏对案情要素的有效利用而容易被案例内容的语义结构相似性误导的问题,提出一种融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别案情描述中的法律事件类型,并利用案例文本中的行为...针对现有的类案检索(LCR)方法缺乏对案情要素的有效利用而容易被案例内容的语义结构相似性误导的问题,提出一种融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别案情描述中的法律事件类型,并利用案例文本中的行为要素构建时序行为链,以突出案情的关键要素,从而使模型聚焦于案例的核心内容,进而解决现有方法易被案例内容的语义结构相似性误导的问题;其次,利用分段编码构造时序行为链的相似性向量表征矩阵,从而增强案例间行为要素的语义交互;最后,通过聚合评分器,从时序行为链、法律事件类型、犯罪类型这3个角度衡量案例的相关性,从而增加案例匹配得分的合理性。实验结果表明,相较于SAILER(Structure-Aware pre-traIned language model for LEgal case Retrieval)方法,所提方法在LeCaRD(Legal Case Retrieval Dataset)上的P@5值提升了4个百分点、P@10值提升了3个百分点、MAP值提升了4个百分点,而NDCG@30值提升了0.8个百分点。可见,该方法能有效利用案情要素来避免案例内容的语义结构相似性的干扰,并能为类案检索提供可靠的依据。展开更多
近年来,大语言模型(large language model,LLM)作为深度学习网络技术的关键分支,在自然语言处理(natural language processing,NLP)领域取得了一系列突破性成就,并被广泛采用.然而,在其包括预训练、微调和实际部署在内的完整生命周期中...近年来,大语言模型(large language model,LLM)作为深度学习网络技术的关键分支,在自然语言处理(natural language processing,NLP)领域取得了一系列突破性成就,并被广泛采用.然而,在其包括预训练、微调和实际部署在内的完整生命周期中,多种安全威胁和隐私泄露的风险相继被发现,引起了学术和工业界越来越多的关注.首先以LLM发展过程中出现的预训练-微调范式、预训练-提示学习范式和预训练-指令微调范式为线索,梳理了针对LLM的常规安全威胁,即3种对抗攻击(对抗样本攻击、后门攻击、投毒攻击)的代表性研究,接着总结了一些最新工作披露的新型安全威胁,然后介绍了LLM的隐私风险及其研究进展.相关内容有助于LLM的研究和部署者在模型设计、训练及应用过程中,识别、预防和缓解这些威胁与风险,同时实现模型性能与安全及隐私保护之间的平衡.展开更多
文摘联邦学习(Federated learning,FL)通过分布式协同训练实现多车辆联合建模,在保护数据隐私的同时,有效支持车联网(Internet of vehicles,IoV)中的交通优化、拥堵治理等应用。然而,传统FL在动态异构的IoV环境中面临中心化架构脆弱和网络不稳定等挑战。区块链技术的去中心化共识和不可篡改特性为IoV-FL提供了理想的解决方案。围绕区块链赋能下的IoV-FL展开综述,介绍IoV、区块链与IoV-FL的基础概念,分析IoV-FL的系统架构与关键应用场景,并梳理传统方法在隐私安全、系统鲁棒性与可扩展性等方面的局限;从模型更新验证、系统可扩展性、激励机制和知识共享4个维度,系统整理已有研究工作中区块链赋能IoV-FL的关键技术方案,探讨IoV-FL在隐私与安全、存储开销、网络吞吐率、设备与数据异构等方面仍面临的关键挑战;最后,从隐私保护增强、资源利用优化以及系统协同等方面展望未来研究方向。
文摘针对现有的类案检索(LCR)方法缺乏对案情要素的有效利用而容易被案例内容的语义结构相似性误导的问题,提出一种融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别案情描述中的法律事件类型,并利用案例文本中的行为要素构建时序行为链,以突出案情的关键要素,从而使模型聚焦于案例的核心内容,进而解决现有方法易被案例内容的语义结构相似性误导的问题;其次,利用分段编码构造时序行为链的相似性向量表征矩阵,从而增强案例间行为要素的语义交互;最后,通过聚合评分器,从时序行为链、法律事件类型、犯罪类型这3个角度衡量案例的相关性,从而增加案例匹配得分的合理性。实验结果表明,相较于SAILER(Structure-Aware pre-traIned language model for LEgal case Retrieval)方法,所提方法在LeCaRD(Legal Case Retrieval Dataset)上的P@5值提升了4个百分点、P@10值提升了3个百分点、MAP值提升了4个百分点,而NDCG@30值提升了0.8个百分点。可见,该方法能有效利用案情要素来避免案例内容的语义结构相似性的干扰,并能为类案检索提供可靠的依据。
文摘近年来,大语言模型(large language model,LLM)作为深度学习网络技术的关键分支,在自然语言处理(natural language processing,NLP)领域取得了一系列突破性成就,并被广泛采用.然而,在其包括预训练、微调和实际部署在内的完整生命周期中,多种安全威胁和隐私泄露的风险相继被发现,引起了学术和工业界越来越多的关注.首先以LLM发展过程中出现的预训练-微调范式、预训练-提示学习范式和预训练-指令微调范式为线索,梳理了针对LLM的常规安全威胁,即3种对抗攻击(对抗样本攻击、后门攻击、投毒攻击)的代表性研究,接着总结了一些最新工作披露的新型安全威胁,然后介绍了LLM的隐私风险及其研究进展.相关内容有助于LLM的研究和部署者在模型设计、训练及应用过程中,识别、预防和缓解这些威胁与风险,同时实现模型性能与安全及隐私保护之间的平衡.