期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于Bert+GCN多模态数据融合的药物分子属性预测 被引量:1
1
作者 闫效莺 靳艳春 +1 位作者 冯月华 张绍武 《生物化学与生物物理进展》 北大核心 2025年第3期783-794,共12页
目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出... 目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出大量优于传统特征工程方法的分子属性预测算法。然而这些算法模型仍然存在标记数据稀缺、泛化性能差等问题。鉴于此,本文提出一种基于Bert+GCN的多模态数据融合的分子属性预测算法(命名为BGMF),旨在整合药物分子的多模态数据,并充分利用大量无标记药物分子训练模型学习药物分子的有用信息。方法本文提出了BGMF算法,该算法根据药物SMILES表达式分别提取了原子序列、分子指纹序列和分子图数据,采用预训练模型Bert和图卷积神经网络GCN结合的方式进行特征学习,在挖掘药物分子中“单词”全局特征的同时,融合了分子图的局部拓扑特征,从而更充分利用分子全局-局部上下文语义关系,之后,通过对原子序列和分子指纹序列的双解码器设计加强分子特征表达。结果5个数据集共43个分子属性预测任务上,BGMF方法的AUC值均优于现有其他方法。此外,本文还构建独立测试数据集验证了模型具有良好的泛化性能。对生成的分子指纹表征(molecular fingerprint representation)进行t-SNE可视化分析,证明了BGMF模型可成功捕获不同分子指纹的内在结构与特征。结论通过图卷积神经网络与Bert模型相结合,BGMF将分子图数据整合到分子指纹恢复和掩蔽原子恢复的任务中,可以有效地捕捉分子指纹的内在结构和特征,进而高效预测药物分子属性。 展开更多
关键词 Bert预训练 注意力机制 分子指纹 分子属性预测 图卷积神经网络
在线阅读 下载PDF
基于部分互信息和贝叶斯打分函数的基因调控网络构建算法 被引量:4
2
作者 刘飞 张绍武 高红艳 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第5期876-883,共8页
从基因表达数据出发重构基因调控网络,可有效挖掘基因间调控关系,深层次地理解生物调控过程。传统的相关性系数模型、偏相关系数模型仅能发现基因间线性关系,而互信息和条件互信息可用于发现基因间的非线性关系,且能够处理高维低样本基... 从基因表达数据出发重构基因调控网络,可有效挖掘基因间调控关系,深层次地理解生物调控过程。传统的相关性系数模型、偏相关系数模型仅能发现基因间线性关系,而互信息和条件互信息可用于发现基因间的非线性关系,且能够处理高维低样本基因表达数据。但互信息过高估计基因间的相关性,条件互信息过低估计基因间的相关性,从而导致推断出的基因网络假阳性率和假阴性率较高,且不能推断基因调控方向。因而,基于部分互信息和贝叶斯打分函数,提出一种新的基因调控网络构建算法(命名为PMIBSF)。基于部分互信息,PMIBSF算法首先删除初始基因相关网络中的冗余关联边,然后采用贝叶斯网络互信息测试打分函数学习贝叶斯网络结构,快速构建基因调控网络。在计算机模拟网络和真实生物分子网络上,仿真实验结果表明:PMIBSF性能优于目前较流行的LP、PCalg、NARROMI和ARACNE算法,可高精度构建基因调控网络。 展开更多
关键词 部分互信息 互信息测试打分 贝叶斯网络 协方差矩阵 基因调控网络
在线阅读 下载PDF
基于有序条件互信息和有限父结点构建基因调控网络
3
作者 刘飞 张绍武 高红艳 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2017年第5期443-450,共8页
基因调控网络重建是功能基因组研究的基础,有助于理解基因间的调控机理,探索复杂的生命系统及其本质.针对传统贝叶斯方法计算复杂度高、仅能构建小规模基因调控网络,而信息论方法假阳性边较多、且不能推测基因因果定向问题.本文基于有... 基因调控网络重建是功能基因组研究的基础,有助于理解基因间的调控机理,探索复杂的生命系统及其本质.针对传统贝叶斯方法计算复杂度高、仅能构建小规模基因调控网络,而信息论方法假阳性边较多、且不能推测基因因果定向问题.本文基于有序条件互信息和有限父结点,提出一种快速构建基因调控网络的OCMIPN算法.OCMIPN方法首先采用有序条件互信息构建基因调控相关网络;然后根据基因调控网络拓扑先验知识,限制每个基因结点的父结点数量,利用贝叶斯方法推断出基因调控网络结构,有效降低算法的时间计算复杂度.人工合成网络及真实生物分子网络上仿真实验结果表明:OCMIPN方法不仅能构建出高精度的基因调控网络,且时间计算复杂度较低,其性能优于LASSO、ARACNE、Scan BMA和LBN等现有流行算法. 展开更多
关键词 基因调控网络 贝叶斯网络模型 有序条件互信息 有限父结点 因果定向
在线阅读 下载PDF
整合受体调控基因表达信息构建细胞通信网络 被引量:1
4
作者 郭书旗 张绍武 +1 位作者 李岩 张世华 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2023年第3期623-633,共11页
目的构建细胞通信网络有助于揭示细胞间协同工作机制、生物学过程和疾病发病机理。目前基于配体-受体相互作用构建细胞通信网络的方法大多只考虑配体和受体的表达信息,忽略了受体对其调控基因的信号传递影响,导致构建的细胞通信网络可... 目的构建细胞通信网络有助于揭示细胞间协同工作机制、生物学过程和疾病发病机理。目前基于配体-受体相互作用构建细胞通信网络的方法大多只考虑配体和受体的表达信息,忽略了受体对其调控基因的信号传递影响,导致构建的细胞通信网络可靠性较低。鉴于此,本文提出IRRG算法,旨在构建更为准确的细胞通信网络,并挖掘具有生物学意义的细胞通信模式。方法本文提出了一种整合受体调控基因表达信息构建细胞通信网络的方法(命名为IRRG)。该方法通过随机游走方式计算受体对下游基因的影响得分,进而与配体-受体共表达量结合构建细胞通信网络。结果使用IRRG构建了小鼠滤泡间表皮(IFE)细胞通信网络并分析了配体-受体对的生物学意义,验证了IRRG计算受体影响得分的稳定性和细胞通信网络构建的可靠性。此外,使用IRRG构建了透明细胞肾细胞癌(ccRCC)的细胞通信网络,挖掘并分析其肿瘤微环境细胞通信模式。结论IRRG可以构建富有生物学意义并且可靠的细胞通信网络,帮助人们从细胞通信的角度更深入地了解多种生物过程。IRRG算法代码可从GitHub获取:https://github.com/NWPU-903PR/IRRG。 展开更多
关键词 细胞通信 配体-受体 基因共表达 基因调控网络 随机游走
在线阅读 下载PDF
生物分子网络弹性研究进展 被引量:1
5
作者 李岩 张绍武 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2022年第10期1987-2000,共14页
弹性是生物分子网络重要且基础的属性之一,一方面弹性赋予生物分子网络抵抗内部噪声与环境干扰并维持其自身基本功能的能力,另一方面,弹性为网络状态的恢复制造了阻力。生物分子网络弹性研究试图回答如下3个问题:a.生物分子网络弹性的... 弹性是生物分子网络重要且基础的属性之一,一方面弹性赋予生物分子网络抵抗内部噪声与环境干扰并维持其自身基本功能的能力,另一方面,弹性为网络状态的恢复制造了阻力。生物分子网络弹性研究试图回答如下3个问题:a.生物分子网络弹性的产生机理是什么?b.弹性影响下生物分子网络的状态如何发生转移?c.如何预测生物网络状态转换临界点,以防止系统向不理想的状态演化?因此,研究生物分子网络弹性有助于理解生物系统内部运作机理,同时对诸如疾病发生临界点预测、生物系统状态逆转等临床应用具有重要的指导意义。鉴于此,本文主要针对以上生物分子网络弹性领域的3个热点研究问题,在研究方法和生物学应用上进行了系统地综述,并对未来生物分子网络弹性的研究方向进行了展望。 展开更多
关键词 弹性 生物分子网络 多稳定性 非平衡动力系统 状态转换 临界点
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部