聚类技术是数据挖掘中的一个重要方法,PAM(Partitioning Around Medoids)是基于分区的聚类算法的一种,它试图将n个数据对象分成k个部分。在并行粒子群PSO(Particle Swarm Optimization)算法中,需要划分整个种群为几个相互不重叠的子种...聚类技术是数据挖掘中的一个重要方法,PAM(Partitioning Around Medoids)是基于分区的聚类算法的一种,它试图将n个数据对象分成k个部分。在并行粒子群PSO(Particle Swarm Optimization)算法中,需要划分整个种群为几个相互不重叠的子种群。因此,引入PAM来划分整个种群。通过聚类,相同子种群的粒子相对集中,从而能够较容易地相互学习。这使得有限的时间能够花费在最有效的搜索上,以便提高算法的搜索效率。为了均匀地探测整个解空间,引入均匀设计来产生初始种群,使种群成员均匀地分散在可行解空间中。进化过程中,均匀设计也被引入来替换种群中的较差个体。提出基于PAM和均匀设计的并行粒子群算法,它结合并充分利用了二者的优点。对几个测试问题的实验结果证明,提出的算法比传统的并行粒子群算法具有更高的性能和更好的收敛准确性。展开更多
人工免疫入侵检测是当前主流的入侵检测技术之一,而危险理论中树突状细胞入侵检测方法是人工免疫研究的最新成果。建立危险理论树突状细胞入侵检测模型的关键是要解决危险信号的定义和表示,文章在免疫危险理论和树突状细胞理论基础上,...人工免疫入侵检测是当前主流的入侵检测技术之一,而危险理论中树突状细胞入侵检测方法是人工免疫研究的最新成果。建立危险理论树突状细胞入侵检测模型的关键是要解决危险信号的定义和表示,文章在免疫危险理论和树突状细胞理论基础上,使用多分类器算法动态提取危险信号,设计MC-DCA入侵检测模型,以提高抗原提呈、抗体识别的效率;并使用KDD CUP 99常用网络入侵检测数据,对构建的MC-DCA入侵检测仿真模型和传统AIS模型、DT模型进行对比和仿真实验,实验结果表明MC-DCA有更好的入侵检测识别能力。展开更多
文摘【目的】针对Mean squared error(MSE)作为损失函数在人眼感知方面存在局限性,以及基于卷积神经网络的图像超分辨率(Super-resolution,SR)算法生成的图像存在参数较多、计算量较大、训练时间较长、纹理模糊等问题,设计基于深层卷积神经网络的单幅图像超分辨率重建模型。【方法】使用ImageNet预先训练的大型卷积神经网络Visual geometry group(VGG)模型提取图像特征,利用该特征设计视觉感知损失函数进行训练学习,引入亚像素卷积层(Sub-pixel convolution)替换上采样层,缓解生成图像的棋盘效应。【结果】设计的模型对放大两倍的图像进行超分辨率修复,与其他4种超分辨率重建模型的Peak signal to noise ratio(PSNR)值接近,且生成图像的视觉效果更加清晰逼真,细节更加细腻。【结论】该模型可以实现输入不同大小的低分辨率图像而不必多次训练学习不同比例的放大模型,可以实现对不同放大倍数图像的训练和预测,在保持一定PSNR正确率的前提下,放大后的超分辨率图像能够恢复更多纹理细节和更佳视觉效果。
文摘聚类技术是数据挖掘中的一个重要方法,PAM(Partitioning Around Medoids)是基于分区的聚类算法的一种,它试图将n个数据对象分成k个部分。在并行粒子群PSO(Particle Swarm Optimization)算法中,需要划分整个种群为几个相互不重叠的子种群。因此,引入PAM来划分整个种群。通过聚类,相同子种群的粒子相对集中,从而能够较容易地相互学习。这使得有限的时间能够花费在最有效的搜索上,以便提高算法的搜索效率。为了均匀地探测整个解空间,引入均匀设计来产生初始种群,使种群成员均匀地分散在可行解空间中。进化过程中,均匀设计也被引入来替换种群中的较差个体。提出基于PAM和均匀设计的并行粒子群算法,它结合并充分利用了二者的优点。对几个测试问题的实验结果证明,提出的算法比传统的并行粒子群算法具有更高的性能和更好的收敛准确性。
文摘人工免疫入侵检测是当前主流的入侵检测技术之一,而危险理论中树突状细胞入侵检测方法是人工免疫研究的最新成果。建立危险理论树突状细胞入侵检测模型的关键是要解决危险信号的定义和表示,文章在免疫危险理论和树突状细胞理论基础上,使用多分类器算法动态提取危险信号,设计MC-DCA入侵检测模型,以提高抗原提呈、抗体识别的效率;并使用KDD CUP 99常用网络入侵检测数据,对构建的MC-DCA入侵检测仿真模型和传统AIS模型、DT模型进行对比和仿真实验,实验结果表明MC-DCA有更好的入侵检测识别能力。