当前,数据已成为关键战略资源,数据挖掘和分析技术在各行业发挥着重要作用,但也存在着数据泄露的风险。安全函数计算(Secure Function Evaluation,SFE)可以在保证数据安全的前提下完成任意函数的计算。Yao协议是一种用于实现安全函数计...当前,数据已成为关键战略资源,数据挖掘和分析技术在各行业发挥着重要作用,但也存在着数据泄露的风险。安全函数计算(Secure Function Evaluation,SFE)可以在保证数据安全的前提下完成任意函数的计算。Yao协议是一种用于实现安全函数计算的协议,该协议在混淆电路(Garbled Circuit,GC)生成和计算阶段含有大量加解密计算操作,且在不经意传输(Oblivious Transfer,OT)阶段具有较高的计算开销,难以满足复杂的现实应用需求。针对Yao协议的效率问题,基于现场可编程门阵列(Field Programmable Gate Array,FPGA)的异构计算对Yao协议进行加速,并结合提出的轻量级代理不经意传输协议,最终设计出轻量级异构安全计算加速框架。该方案中,混淆电路生成方和代理计算方都实现了CPU-FPGA异构计算架构。该架构借助CPU擅长处理控制流的优势和FPGA的并行处理优势对混淆电路生成阶段和计算阶段进行加速,提高了生成混淆电路和计算混淆电路的效率,减轻了计算压力。另外,相比于通过非对称密码算法实现的不经意传输协议,在轻量级代理不经意传输协议中,混淆电路生成方和代理计算方只需执行对称操作,代理计算方即可获取用户输入对应的生成方持有的随机数。该轻量级代理不经意传输协议减轻了用户和服务器在不经意传输阶段的计算压力。实验证明,在局域网环境下,与Yao协议的软件实现(TinyGarble框架)相比,该方案的计算效率至少提高了128倍。展开更多
在线人体动作识别是人体动作识别的最终目标,但由于如何分割动作序列是一个待解决的难点问题,因此目前大多数人体动作识别方法仅关注在分割好的动作序列中进行动作识别,未关注在线人体动作识别问题.本文针对这一问题,提出了一种可以完...在线人体动作识别是人体动作识别的最终目标,但由于如何分割动作序列是一个待解决的难点问题,因此目前大多数人体动作识别方法仅关注在分割好的动作序列中进行动作识别,未关注在线人体动作识别问题.本文针对这一问题,提出了一种可以完成在线人体动作识别的时序深度置信网络(Temporal deep belief network,TDBN)模型.该模型充分利用动作序列前后帧提供的上下文信息,解决了目前深度置信网络模型仅能识别静态图像的问题,不仅大大提高了动作识别的准确率,而且由于该模型不需要人为对动作序列进行分割,可以从动作进行中的任意时刻开始识别,实现了真正意义上的在线动作识别,为实际应用打下了较好的理论基础.展开更多
文摘在线人体动作识别是人体动作识别的最终目标,但由于如何分割动作序列是一个待解决的难点问题,因此目前大多数人体动作识别方法仅关注在分割好的动作序列中进行动作识别,未关注在线人体动作识别问题.本文针对这一问题,提出了一种可以完成在线人体动作识别的时序深度置信网络(Temporal deep belief network,TDBN)模型.该模型充分利用动作序列前后帧提供的上下文信息,解决了目前深度置信网络模型仅能识别静态图像的问题,不仅大大提高了动作识别的准确率,而且由于该模型不需要人为对动作序列进行分割,可以从动作进行中的任意时刻开始识别,实现了真正意义上的在线动作识别,为实际应用打下了较好的理论基础.
基金National Natural Science Foundation of China(61601198)China Scholarship Council(CSC201908370113)+1 种基金Shandong Provincial Natural Science Foundation(ZR2019MF010)Doctoral Foundation of University of Jinan(XBS1714)。