本文以山东省7市240批次鲜枣为研究对象,基于气相色谱-串联质谱技术(gas chromatography-tandem mass spectrometry,GC-MS/MS)和液相色谱-串联质谱技术(liquid chromatography-tandem mass spectrometry,LC-MS/MS),实现了对其中33种农...本文以山东省7市240批次鲜枣为研究对象,基于气相色谱-串联质谱技术(gas chromatography-tandem mass spectrometry,GC-MS/MS)和液相色谱-串联质谱技术(liquid chromatography-tandem mass spectrometry,LC-MS/MS),实现了对其中33种农残含量的检测。结合GB 2763-2021《食品安全国家标准食品中农药最大残留限量》中针对鲜枣的不同农药的最大残留限量,对检测结果进行分析,进一步了解了山东省内鲜枣的农药残留现状,以期为鲜枣今后的规范用药提供数据支持。展开更多
多特征模态融合时存在噪声的叠加,而为减小模态间的差异采用的级联方式的结构也未充分利用模态间的特征信息,因此设计一种跨模态双流交替交互网络(DAINet)方法。首先,构建双流交替增强(DAE)模块,以交互双分支形式融合模态特征,并通过学...多特征模态融合时存在噪声的叠加,而为减小模态间的差异采用的级联方式的结构也未充分利用模态间的特征信息,因此设计一种跨模态双流交替交互网络(DAINet)方法。首先,构建双流交替增强(DAE)模块,以交互双分支形式融合模态特征,并通过学习模态数据的映射关系,以红外-可见光-红外(IR-VIS-IR)和可见光-红外-可见光(VIS-IR-VIS)的双向反馈调节实现模态间噪声的交叉抑制;然后,构建跨模态特征交互(CMFI)模块,并引入残差结构将红外-可见光模态内以及模态间的低层特征和高层特征进行有效融合,从而减小模态间的差异并充分利用模态间的特征信息;最后,在自建红外-可见光多模态台风数据集及RGB-NIR多模态公开场景数据集上进行实验,以验证DAE模块和CMFI模块的有效性。实验结果表明,与简单级联融合方法相比,所提的基于DAINet的特征融合方法在自建台风数据集上的红外模态和可见光模态上的总体分类精度分别提高了6.61和3.93个百分点,G-mean值分别提高了6.24和2.48个百分点,表明所提方法在类别不均衡分类任务上的通用性;所提方法在RGB-NIR数据集上的2种测试模态下的总体分类精度分别提高了13.47和13.90个百分点。同时,所提方法在2个数据集上分别与IFCNN(general Image Fusion framework based on Convolutional Neural Network)和DenseFuse方法进行对比的实验结果表明,所提方法在自建台风数据集上的2种测试模态下的总体分类精度分别提高了9.82、6.02和17.38、1.68个百分点。展开更多
文摘本文以山东省7市240批次鲜枣为研究对象,基于气相色谱-串联质谱技术(gas chromatography-tandem mass spectrometry,GC-MS/MS)和液相色谱-串联质谱技术(liquid chromatography-tandem mass spectrometry,LC-MS/MS),实现了对其中33种农残含量的检测。结合GB 2763-2021《食品安全国家标准食品中农药最大残留限量》中针对鲜枣的不同农药的最大残留限量,对检测结果进行分析,进一步了解了山东省内鲜枣的农药残留现状,以期为鲜枣今后的规范用药提供数据支持。
文摘多特征模态融合时存在噪声的叠加,而为减小模态间的差异采用的级联方式的结构也未充分利用模态间的特征信息,因此设计一种跨模态双流交替交互网络(DAINet)方法。首先,构建双流交替增强(DAE)模块,以交互双分支形式融合模态特征,并通过学习模态数据的映射关系,以红外-可见光-红外(IR-VIS-IR)和可见光-红外-可见光(VIS-IR-VIS)的双向反馈调节实现模态间噪声的交叉抑制;然后,构建跨模态特征交互(CMFI)模块,并引入残差结构将红外-可见光模态内以及模态间的低层特征和高层特征进行有效融合,从而减小模态间的差异并充分利用模态间的特征信息;最后,在自建红外-可见光多模态台风数据集及RGB-NIR多模态公开场景数据集上进行实验,以验证DAE模块和CMFI模块的有效性。实验结果表明,与简单级联融合方法相比,所提的基于DAINet的特征融合方法在自建台风数据集上的红外模态和可见光模态上的总体分类精度分别提高了6.61和3.93个百分点,G-mean值分别提高了6.24和2.48个百分点,表明所提方法在类别不均衡分类任务上的通用性;所提方法在RGB-NIR数据集上的2种测试模态下的总体分类精度分别提高了13.47和13.90个百分点。同时,所提方法在2个数据集上分别与IFCNN(general Image Fusion framework based on Convolutional Neural Network)和DenseFuse方法进行对比的实验结果表明,所提方法在自建台风数据集上的2种测试模态下的总体分类精度分别提高了9.82、6.02和17.38、1.68个百分点。