智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题...智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题,该文提出一种基于时空图卷积网络(spatial temporal graph convolutional networks,STGCN)和Transformer相结合的综合能源系统短期负荷预测模型。首先,利用STGCN作为输入嵌入层对多元输入序列进行编码,填补Transformer中没有充分考虑相关信息的空白。然后,利用Transformer中的自注意机制捕获序列数据的时间依赖性。最后,利用前馈神经网络输出预测负荷值。以浙江省某地区电力数据集为例,与其他4种预测模型相比较平均绝对百分比误差均在5%以内,结果表明该文模型具有较高的预测精度和稳定性。展开更多
电网规模的扩大使得电力系统运行状态变得更加复杂,对电网安全稳定运行提出了更高要求。提出了基于深度学习中长短时记忆(long-and-short term memory,LSTM)的电力暂态稳定在线评估模型。该模型通过获取全网各节点电压、电流、功率等电...电网规模的扩大使得电力系统运行状态变得更加复杂,对电网安全稳定运行提出了更高要求。提出了基于深度学习中长短时记忆(long-and-short term memory,LSTM)的电力暂态稳定在线评估模型。该模型通过获取全网各节点电压、电流、功率等电气量,实时计算得到电网失稳可能性评分,并在新英格兰10机39线系统上对该模型进行测试与优化。实验结果表明,该模型能通过实时运算得到电网稳定性的评估及预警,具有准确性高、预警能力强、支持在线监测的特点。展开更多
文摘电网规模的扩大使得电力系统运行状态变得更加复杂,对电网安全稳定运行提出了更高要求。提出了基于深度学习中长短时记忆(long-and-short term memory,LSTM)的电力暂态稳定在线评估模型。该模型通过获取全网各节点电压、电流、功率等电气量,实时计算得到电网失稳可能性评分,并在新英格兰10机39线系统上对该模型进行测试与优化。实验结果表明,该模型能通过实时运算得到电网稳定性的评估及预警,具有准确性高、预警能力强、支持在线监测的特点。