在深度学习领域中,注意力机制因其出色的性能以及即插即用的便捷性,在图像处理任务中得到了广泛应用。介绍了通道注意力机制、空间注意力机制以及通道与空间混合注意力机制这3类主流注意力机制的核心思想和实现方法。通过对比分析它们...在深度学习领域中,注意力机制因其出色的性能以及即插即用的便捷性,在图像处理任务中得到了广泛应用。介绍了通道注意力机制、空间注意力机制以及通道与空间混合注意力机制这3类主流注意力机制的核心思想和实现方法。通过对比分析它们之间的优势与缺陷,探讨了注意力机制所存在的挑战与问题,给出了采用VGGNet(Visual Geometry Group Network)模型对注意力机制在图像分类任务中的性能评测结果。最后,展望了注意力机制未来的发展趋势,以期为后续研究提供有价值的参考与启示。展开更多
为了提升未来弹性光网络的性能,提出了一种基于幅值密度特征的调制格式识别方法。该方法将幅值密度特征作为改进的Mobile Net V2模型的输入,通过特征识别确定调制格式类型,并引入了归一化注意力机制(NAM),实现对传输信号调制格式的精准...为了提升未来弹性光网络的性能,提出了一种基于幅值密度特征的调制格式识别方法。该方法将幅值密度特征作为改进的Mobile Net V2模型的输入,通过特征识别确定调制格式类型,并引入了归一化注意力机制(NAM),实现对传输信号调制格式的精准识别。在28 GBaud正交相移键控(QPSK)、8电平正交幅度调制(8QAM)、16QAM、32QAM、64QAM和128QAM传输系统中验证了该方案的可行性。实验结果表明:每种调制格式在达到100%识别准确率时所需的最低光信噪比(OSNR)均低于其对应的20%前向纠错(FEC)阈值,而且,在较宽的OSNR范围内达到了99.62%的识别准确率;在存在残余色散的光网络中,该方案仍能保持较高的识别性能。展开更多
为解决卫星网络中地面中继站的优化部署问题,采用Okumura-Hata模型和对数正态阴影模型模拟信号的衰落,基于随机采样的GDEM v3(ASTER Global Digital Elevation Map v3)数据构建三维覆盖模型。地面中继站部署问题被转化为最大覆盖问题(Ma...为解决卫星网络中地面中继站的优化部署问题,采用Okumura-Hata模型和对数正态阴影模型模拟信号的衰落,基于随机采样的GDEM v3(ASTER Global Digital Elevation Map v3)数据构建三维覆盖模型。地面中继站部署问题被转化为最大覆盖问题(Maximum Covering Location Problem,MCLP)和集合覆盖问题(Set Covering Problem,SCP)。利用Vincenty公式计算地面中继站与终端的距离,并引入高度、障碍物等地形约束。设计了贪心、遗传和粒子群算法求解地面中继站最优部署位置。在四川阿坝、甘孜和凉山3个自治区进行部署实验,仿真结果表明,在SCP问题上,贪心算法的部署效率最高,分别只需34、58和28个地面中继站即可实现全覆盖;而在MCLP问题上,遗传算法表现出最高的覆盖率,分别通过部署20个地面中继站可实现92.64%、72.58%和98.58%的覆盖率。所提方法综合考虑了地形、信号衰减、部署难度和成本因素,展现出良好的移植性,能够高效地在不同省份实现地面中继站的优化部署。展开更多
针对IEEE 802.11p标准中导频数量有限,难以准确追踪车联万物(Vehicle-to-Everything,V2X)通信中时变信道的问题,学者们研究了数据导频辅助(Data Pilot Aided,DPA)信道估计方案。然而,这些经典DPA方案不能在完整的信噪比(Signal to Noise...针对IEEE 802.11p标准中导频数量有限,难以准确追踪车联万物(Vehicle-to-Everything,V2X)通信中时变信道的问题,学者们研究了数据导频辅助(Data Pilot Aided,DPA)信道估计方案。然而,这些经典DPA方案不能在完整的信噪比(Signal to Noise Ratio,SNR)范围内给出令人满意的效果,并且其估计结果的可靠性易受误差传播的影响。研究了一种新的信道估计方案,基于使用虚拟子载波的最小均方误差(Minimum Mean Square Error Using Virtual Pilots,MMSE-VP)方案,提出一种带有时间平均操作的改进MMSE(Improved MMSE,IMMSE)方案。IMMSE方案通过利用相邻正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号间信道的相关性来提高MMSE-VP方案在低SNR区域的性能,达到在整个SNR区域有良好表现的目的。联合深度学习技术,采用全连接神经网络(Fully Connected Neural Network,FCNN)作为IMMSE方案的非线性后处理模块,减少误差并获得更好的估计性能。在不同实验条件下的仿真结果表明,提出的信道估计方案可以适应调制方式和车辆速度的变化,能有效应对V2X通信中的信道估计问题。展开更多
为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率。采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测...为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率。采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测模型。使用决定系数(R^(2))和预测均方误差(root mean square error of prediction,RMSEP)评价模型性能。光谱中含有大量冗余信息,为有效提升黄水淀粉含量检测精度和优化模型效率,将不同特征提取方法的优点结合,发现使用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)结合连续投影算法(successive projections algorithm,SPA)提取的光谱特征所建立的PLSR模型,相较于未使用特征提取或仅使用单一特征提取所建立的模型均有明显提升。在单一使用CARS时,模型的R^(2)为0.9654,RMSEP为0.2012%,而结合SPA后,R2为0.9738,RMSEP为0.1748%。此外,光谱维度从2203个减少到了126个,不仅提高了预测精度,也提升了建模效率。本研究提出的方法可作为黄水近红外定量模型优化的有效途径。展开更多
文摘在深度学习领域中,注意力机制因其出色的性能以及即插即用的便捷性,在图像处理任务中得到了广泛应用。介绍了通道注意力机制、空间注意力机制以及通道与空间混合注意力机制这3类主流注意力机制的核心思想和实现方法。通过对比分析它们之间的优势与缺陷,探讨了注意力机制所存在的挑战与问题,给出了采用VGGNet(Visual Geometry Group Network)模型对注意力机制在图像分类任务中的性能评测结果。最后,展望了注意力机制未来的发展趋势,以期为后续研究提供有价值的参考与启示。
文摘为了提升未来弹性光网络的性能,提出了一种基于幅值密度特征的调制格式识别方法。该方法将幅值密度特征作为改进的Mobile Net V2模型的输入,通过特征识别确定调制格式类型,并引入了归一化注意力机制(NAM),实现对传输信号调制格式的精准识别。在28 GBaud正交相移键控(QPSK)、8电平正交幅度调制(8QAM)、16QAM、32QAM、64QAM和128QAM传输系统中验证了该方案的可行性。实验结果表明:每种调制格式在达到100%识别准确率时所需的最低光信噪比(OSNR)均低于其对应的20%前向纠错(FEC)阈值,而且,在较宽的OSNR范围内达到了99.62%的识别准确率;在存在残余色散的光网络中,该方案仍能保持较高的识别性能。
文摘针对IEEE 802.11p标准中导频数量有限,难以准确追踪车联万物(Vehicle-to-Everything,V2X)通信中时变信道的问题,学者们研究了数据导频辅助(Data Pilot Aided,DPA)信道估计方案。然而,这些经典DPA方案不能在完整的信噪比(Signal to Noise Ratio,SNR)范围内给出令人满意的效果,并且其估计结果的可靠性易受误差传播的影响。研究了一种新的信道估计方案,基于使用虚拟子载波的最小均方误差(Minimum Mean Square Error Using Virtual Pilots,MMSE-VP)方案,提出一种带有时间平均操作的改进MMSE(Improved MMSE,IMMSE)方案。IMMSE方案通过利用相邻正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号间信道的相关性来提高MMSE-VP方案在低SNR区域的性能,达到在整个SNR区域有良好表现的目的。联合深度学习技术,采用全连接神经网络(Fully Connected Neural Network,FCNN)作为IMMSE方案的非线性后处理模块,减少误差并获得更好的估计性能。在不同实验条件下的仿真结果表明,提出的信道估计方案可以适应调制方式和车辆速度的变化,能有效应对V2X通信中的信道估计问题。
文摘为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率。采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测模型。使用决定系数(R^(2))和预测均方误差(root mean square error of prediction,RMSEP)评价模型性能。光谱中含有大量冗余信息,为有效提升黄水淀粉含量检测精度和优化模型效率,将不同特征提取方法的优点结合,发现使用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)结合连续投影算法(successive projections algorithm,SPA)提取的光谱特征所建立的PLSR模型,相较于未使用特征提取或仅使用单一特征提取所建立的模型均有明显提升。在单一使用CARS时,模型的R^(2)为0.9654,RMSEP为0.2012%,而结合SPA后,R2为0.9738,RMSEP为0.1748%。此外,光谱维度从2203个减少到了126个,不仅提高了预测精度,也提升了建模效率。本研究提出的方法可作为黄水近红外定量模型优化的有效途径。