小而杂乱的物体交织在一起,在遥感图像中尤为常见,给目标检测带来了巨大挑战。在旋转目标检测任务中这个困难更加突出。鉴于此,本文提出了基于提案增强的解耦特征挖掘旋转检测器(decoupled feature mining rotational detector based on...小而杂乱的物体交织在一起,在遥感图像中尤为常见,给目标检测带来了巨大挑战。在旋转目标检测任务中这个困难更加突出。鉴于此,本文提出了基于提案增强的解耦特征挖掘旋转检测器(decoupled feature mining rotational detector based on proposal enhancement,PDMDet)。首先,采用单阶段检测器取代两阶段检测器的提案生成网络,通过生成高质量提案以减少背景冗余。其次,在相同维度使用自注意力,不同维度使用交叉注意力,通过对相同维度特征增强,不同维度特征交错融合提升检测器对不同尺寸目标的识别能力。最后,鉴于分类和定向边界框回归任务对特征的敏感性不同,本文提出解耦特征细化处理两个不同任务。通过实验,PDMDet在DOTA-v1.0、DOTA-v1.5和HRSC2016这3个数据集上分别取得单尺度78.37%、72.35%、98.60%的平均精度均值,检测准确率高于其他算法,在复杂的旋转目标检测场景具有一定的竞争力。展开更多
文摘小而杂乱的物体交织在一起,在遥感图像中尤为常见,给目标检测带来了巨大挑战。在旋转目标检测任务中这个困难更加突出。鉴于此,本文提出了基于提案增强的解耦特征挖掘旋转检测器(decoupled feature mining rotational detector based on proposal enhancement,PDMDet)。首先,采用单阶段检测器取代两阶段检测器的提案生成网络,通过生成高质量提案以减少背景冗余。其次,在相同维度使用自注意力,不同维度使用交叉注意力,通过对相同维度特征增强,不同维度特征交错融合提升检测器对不同尺寸目标的识别能力。最后,鉴于分类和定向边界框回归任务对特征的敏感性不同,本文提出解耦特征细化处理两个不同任务。通过实验,PDMDet在DOTA-v1.0、DOTA-v1.5和HRSC2016这3个数据集上分别取得单尺度78.37%、72.35%、98.60%的平均精度均值,检测准确率高于其他算法,在复杂的旋转目标检测场景具有一定的竞争力。