期刊文献+

基于多尺度注意力U-Net的医学肝脏计算机断层扫描图片分割算法 被引量:3

Medical liver computed tomography image segmentation lgorithm algorithm based on multi-scale attention U-Net
在线阅读 下载PDF
导出
摘要 针对传统肝脏分割方法十分依赖医生的经验,并且分割过程耗时,易出错的现象,本文提出适用于临床情景中医学肝脏计算机断层扫描的分割方法。基于多尺度残差混合注意力U-Net将多尺度注意力机制模块引入U-Net网络。该模块可以抑制不相关的区域,从多个角度提取图像特征,并突出显示分割任务;在标准卷积层中添加残差结构可以有效地避免梯度爆炸并增加网络深度;使用混合空洞注意力常规层来替换“U”形网络的底部,以获得上下文信息,避免空间信息的丢失。试验结果表明:在LiTS17和SLiver07数据集上与其他方法相比,本文方法具有更好的性能和最高的分割精度。 In response to the challenges of traditional liver segmentation methods,which are highly dependent on doctors′experience and are time-consuming and prone to errors,a liver segmentation method suitable for clinical scenarios using medical liver CT images has been proposed.The multi-scale attention mechanism modules are incorporated into the U-Net network,specifically the multi-scale residual hybrid attention U-Net.These modules can suppress irrelevant regions,extract image features from multiple angles,and highlight the segmentation task.Incorporating a residual structure into the standard convolutional layer effectively avoids gradient explosion and increases network depth.Using a hybrid attenuation attention regular layer at the bottom of the“U”-shaped network helps obtain context information and prevents the loss of spatial information.Experimental results show that our method outperforms other methods on the LiTS17 and SLiver07 datasets and achieves the highest segmentation accuracy.
作者 金涛 王震 李昭蒂 JIN Tao;WANG Zhen;LI Zhaodi(College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China;College of Computer and Control Engineering,Qiqihar University,Qiqihar 161006,China;School of Public Health,Qiqihar Medical College,Qiqihar 161006,China)
出处 《哈尔滨工程大学学报》 北大核心 2025年第3期529-539,共11页 Journal of Harbin Engineering University
基金 黑龙江省省属本科高校基本科研业务费项目(2024-KYYWF-0345).
关键词 神经网络 深度学习 语义分割 肝脏分割 医学图像 注意力机制 空洞卷积 neural network deep learning semantic segmentation liver segmentation medical images attention mechanisms atrous convolution
作者简介 金涛,男,副教授;通信作者:王震,男,助教,硕士,E-mail:wangzhen001513@qmu.edu.cn。
  • 相关文献

参考文献8

二级参考文献36

  • 1崔文成,张鹏霞,邵虹.基于深度可分离卷积网络的皮肤镜图像病灶分割方法[J].智能科学与技术学报,2020,2(4):385-393. 被引量:6
  • 2徐杰,施鹏飞.基于相位一致与区域生长的自然彩色图像分割[J].电子学报,2004,32(7):1203-1205. 被引量:12
  • 3DuncanJ C, Ayache N. Medical image analysis: progress over two decades and the challenges ahead[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 85-106.
  • 4Sahoo P K, Soltani S, Wong A K C, et al. A survey of thresh?olding techniques[J]. Computer Vision, Graphics and Image Processing, 1988,41(2): 233-260.
  • 5ManginJ F, Frouin V, Bloch I, et al. From 3D magnetic reso?nance images to structural representations of the cortex topog?raphy using topology preserving deformations[J].Journal of Mathematical Imaging and Vision-Special Issue on Mathe- matical Imaging, 1995,5(4): 297-318.
  • 6Held K, Kops E R, Krause BJ, et al. Markov random field segmentation of brain MR images[J]. IEEE Transactions on Medical Imaging, 1997, 16(6): 878-886.
  • 7Nalwa V S, Binford T O. On detecting edges[J]. IEEE Transac?tions on Pattern Analysis and Machine Intelligence, 1986,8(6): 699-714.
  • 8Goshtasby A. Design and recovery of 2-D and 3-D shapes us?ing rational Gaussian curves and surfaces[J]. InternationalJournal of Computer Vision, 1993, 10(3): 233-256.
  • 9Mortensen E N, Barrett W A. Intelligent scissors for image composition[C]// Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACMPress, 1995: 191-198.
  • 10McInerney T, Terzopoulos D. Deformable models in medical image analysis[ClII Proceedings of the Workshop on Mathe?matical Methods in Biomedical Image Analysis. Los Alamitos: IEEE Computer Society Press, 1996: 171-180.

共引文献2113

同被引文献27

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部