Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The ...Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made.展开更多
Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleif...Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability.展开更多
[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advan...[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.展开更多
This study was undertaken to optimize the solvent-free microwave extraction conditions and DPPH radicalscavenging activity of essential oil from Schisandra chinesis fruits.The uniform design method was employed for pr...This study was undertaken to optimize the solvent-free microwave extraction conditions and DPPH radicalscavenging activity of essential oil from Schisandra chinesis fruits.The uniform design method was employed for process optimization.The optimal extraction conditions were determined as follows:extraction time,50 rain;microwave power,800 W;and amount of water addition for pretreatment,40%.Under these conditions,the extraction yield of essential oil was 0.92%.A total of 35 compounds were identified by GC-MS in the obtained essential oil with a total content of 91.06%,mostly consisting of ylangene(34.81%),β-himachalene(10.74%)andα-bergamotene(9.22%).The ICs0 value of the essential oil against DPPH free radicals was determined as 3.01 mg/mL.In conclusion,solvent-free microwave extraction is a feasible method for essential oil extraction from Schisandra chinensis fruits.展开更多
文摘Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made.
文摘Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability.
基金Xiong′an New Area Science and Technology Innovation Project(2022XACX1000)。
文摘[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.
文摘This study was undertaken to optimize the solvent-free microwave extraction conditions and DPPH radicalscavenging activity of essential oil from Schisandra chinesis fruits.The uniform design method was employed for process optimization.The optimal extraction conditions were determined as follows:extraction time,50 rain;microwave power,800 W;and amount of water addition for pretreatment,40%.Under these conditions,the extraction yield of essential oil was 0.92%.A total of 35 compounds were identified by GC-MS in the obtained essential oil with a total content of 91.06%,mostly consisting of ylangene(34.81%),β-himachalene(10.74%)andα-bergamotene(9.22%).The ICs0 value of the essential oil against DPPH free radicals was determined as 3.01 mg/mL.In conclusion,solvent-free microwave extraction is a feasible method for essential oil extraction from Schisandra chinensis fruits.