为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT...为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT^(*)算法融合,提出一种自适应步长增长策略的改进APF-Informed-RRT^(*)算法。首先在选择新节点时,考虑到障碍物和目标点的影响,提出一种自适应步长增长策略来解决采样的盲目性;其次采用三次B样条对拐点处进行平滑处理;最后分别采用RRT^(*)算法、Informed-RRT^(*)算法和改进APF-Informed-RRT^(*)算法在两种环境中进行仿真实验。结果表明,改进APF-Informed-RRT^(*)算法相较于RRT^(*)算法和Informed-RRT^(*)算法,在运行时间、迭代次数以及路径平滑上都得到提升。展开更多
文摘为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT^(*)算法融合,提出一种自适应步长增长策略的改进APF-Informed-RRT^(*)算法。首先在选择新节点时,考虑到障碍物和目标点的影响,提出一种自适应步长增长策略来解决采样的盲目性;其次采用三次B样条对拐点处进行平滑处理;最后分别采用RRT^(*)算法、Informed-RRT^(*)算法和改进APF-Informed-RRT^(*)算法在两种环境中进行仿真实验。结果表明,改进APF-Informed-RRT^(*)算法相较于RRT^(*)算法和Informed-RRT^(*)算法,在运行时间、迭代次数以及路径平滑上都得到提升。
基金Supported by the National Nature Science Foundation of China(11361039)the innovation fund of Inner Mongolia University of Science and Technology(2015QDL19)