基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取...基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。展开更多
针对古籍信息处理中自动断句及标点任务依赖大规模标注语料的现象,在考虑高质量、大规模样本的训练成本昂贵且难以获取的背景下,提出一种基于片段抽取原型网络的古籍文本断句标点提示学习方法。首先,通过对支持集加入结构化提示信息形...针对古籍信息处理中自动断句及标点任务依赖大规模标注语料的现象,在考虑高质量、大规模样本的训练成本昂贵且难以获取的背景下,提出一种基于片段抽取原型网络的古籍文本断句标点提示学习方法。首先,通过对支持集加入结构化提示信息形成有效的提示模板,从而提高模型的学习效率;其次,结合标点位置提取器和原型网络分类器,有效减少传统序列标注方法中的误判影响及非标点标签的干扰。实验结果表明,与Siku-BERT-BiGRU-CRF(Siku-Bidirectional Encoder Representation from Transformer-Bidirectional Gated Recurrent Unit-Conditional Random Field)方法相比,在《史记》数据集上所提方法的F1值提升了2.47个百分点。此外,在公开的多领域古籍数据集CCLUE上,所提方法的精确率和F1值分别达到了91.60%和93.12%,说明所提方法利用少量训练样本就能对多领域古籍进行有效的自动断句标点。因此,所提方法为多领域古籍文本的自动断句及标点任务的深入研究以及提高模型的学习效率提供了新的思路和方法。展开更多
自由空间激光通信APT(Acquisition,Pointing and Tracking)系统主要由粗跟踪系统和精跟踪系统组成,粗跟踪系统主要是完成对目标信号的捕获,以确保入射的信标光在精跟踪控制系统的动态范围内。介绍了粒子滤波在APT粗跟踪系统中的应用,针...自由空间激光通信APT(Acquisition,Pointing and Tracking)系统主要由粗跟踪系统和精跟踪系统组成,粗跟踪系统主要是完成对目标信号的捕获,以确保入射的信标光在精跟踪控制系统的动态范围内。介绍了粒子滤波在APT粗跟踪系统中的应用,针对粒子滤波在跟踪算法中存在的问题进行了改进,设计了颜色和轮廓双重信息融合的似然模型;为提高目标跟踪算法在异常情况下的有效性,采用了异常检测和恢复策略,并设计了跟踪光斑目标的模拟系统。实验表明:所提出的多信息融合的似然模型跟踪算法在目标尺度变化、背景干扰、姿态变化、部分遮挡等环境下均能稳定地跟踪目标,提高了大气激光通信链路的可靠性。展开更多
文摘基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。
文摘针对古籍信息处理中自动断句及标点任务依赖大规模标注语料的现象,在考虑高质量、大规模样本的训练成本昂贵且难以获取的背景下,提出一种基于片段抽取原型网络的古籍文本断句标点提示学习方法。首先,通过对支持集加入结构化提示信息形成有效的提示模板,从而提高模型的学习效率;其次,结合标点位置提取器和原型网络分类器,有效减少传统序列标注方法中的误判影响及非标点标签的干扰。实验结果表明,与Siku-BERT-BiGRU-CRF(Siku-Bidirectional Encoder Representation from Transformer-Bidirectional Gated Recurrent Unit-Conditional Random Field)方法相比,在《史记》数据集上所提方法的F1值提升了2.47个百分点。此外,在公开的多领域古籍数据集CCLUE上,所提方法的精确率和F1值分别达到了91.60%和93.12%,说明所提方法利用少量训练样本就能对多领域古籍进行有效的自动断句标点。因此,所提方法为多领域古籍文本的自动断句及标点任务的深入研究以及提高模型的学习效率提供了新的思路和方法。
文摘自由空间激光通信APT(Acquisition,Pointing and Tracking)系统主要由粗跟踪系统和精跟踪系统组成,粗跟踪系统主要是完成对目标信号的捕获,以确保入射的信标光在精跟踪控制系统的动态范围内。介绍了粒子滤波在APT粗跟踪系统中的应用,针对粒子滤波在跟踪算法中存在的问题进行了改进,设计了颜色和轮廓双重信息融合的似然模型;为提高目标跟踪算法在异常情况下的有效性,采用了异常检测和恢复策略,并设计了跟踪光斑目标的模拟系统。实验表明:所提出的多信息融合的似然模型跟踪算法在目标尺度变化、背景干扰、姿态变化、部分遮挡等环境下均能稳定地跟踪目标,提高了大气激光通信链路的可靠性。