针对轴承早期微弱故障特征信息易被噪声掩盖和现实中难以获得大量典型故障样本的实际情况,提出了基于多分辨奇异值分解(Multi-Resolution Singular Value Decomposition,MRSVD)和变量预测模型模式识别(Variable Predictive Model based ...针对轴承早期微弱故障特征信息易被噪声掩盖和现实中难以获得大量典型故障样本的实际情况,提出了基于多分辨奇异值分解(Multi-Resolution Singular Value Decomposition,MRSVD)和变量预测模型模式识别(Variable Predictive Model based Class Discriminate,VPMCD)的轴承故障智能诊断方法。利用MRSVD对轴承加速度振动信号进行多层分解,提取包含故障特征的细节信息,建立对数正态分布模型,凸显细节信息中的非高斯特性,计算对数均值和对数标准差构造特征向量,并采用VPMCD方法进行故障识别。将该方法应用于实际轴承外圈、内圈、滚动体局部微弱故障状态下的故障诊断,结果显示:故障识别精度达到98.75%,证明了该方法的可行性和有效性。展开更多
如何在含有噪声的振动信号中提取特征参数,是轴承故障诊断的关键问题,为此提出一种基于Morlet小波-奇异值分解(Singular Value Decomposition,SVD)和变量预测模型模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)...如何在含有噪声的振动信号中提取特征参数,是轴承故障诊断的关键问题,为此提出一种基于Morlet小波-奇异值分解(Singular Value Decomposition,SVD)和变量预测模型模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)的故障诊断方法。首先对时域采样信号进行Morlet小波变换预处理,将所得时频系数矩阵进行SVD分析,根据奇异值曲率谱特征滤除噪声,以提取相应尺度下的微弱故障信息;然后自适应选取最佳尺度附近的分量信号,并将Shannon能量熵作为特征参数,以此构建特征向量,用于建立基于VPMCD的故障识别模型。实验采用5折交叉验证法及Jackknife检验法对所提方法进行检验,结果证明了所提方法的有效性。展开更多
如何在含有噪声的振动信号中提取故障特征,是轴承故障诊断的关键问题,为此本文提出一种基于本征时间尺度分解(Intrinsic Time-scale Decomposition,ITD)和敏感奇异值分解(Sensitive Singular Value Decomposition,SSVD)的故障诊断方法....如何在含有噪声的振动信号中提取故障特征,是轴承故障诊断的关键问题,为此本文提出一种基于本征时间尺度分解(Intrinsic Time-scale Decomposition,ITD)和敏感奇异值分解(Sensitive Singular Value Decomposition,SSVD)的故障诊断方法.首先对时域振动信号进行ITD预处理,并根据峭度准则选取包含故障信息的敏感旋转(Proper Rotation,PR)分量用于振动信号重构,以凸显振动信号局部特征;然后对此时频信号进行敏感SVD分析,通过敏感因子及定位因子选择敏感SVD分量重构信号,以滤除噪声干扰,提取微弱故障信息;最后利用Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)计算故障信息的瞬时能量,并对其进行频谱分析,获取故障特征频率,用于识别故障类型.将此方法应用于轴承故障诊断,实验证明了所提方法的有效性.展开更多
文摘针对轴承早期微弱故障特征信息易被噪声掩盖和现实中难以获得大量典型故障样本的实际情况,提出了基于多分辨奇异值分解(Multi-Resolution Singular Value Decomposition,MRSVD)和变量预测模型模式识别(Variable Predictive Model based Class Discriminate,VPMCD)的轴承故障智能诊断方法。利用MRSVD对轴承加速度振动信号进行多层分解,提取包含故障特征的细节信息,建立对数正态分布模型,凸显细节信息中的非高斯特性,计算对数均值和对数标准差构造特征向量,并采用VPMCD方法进行故障识别。将该方法应用于实际轴承外圈、内圈、滚动体局部微弱故障状态下的故障诊断,结果显示:故障识别精度达到98.75%,证明了该方法的可行性和有效性。
文摘如何在含有噪声的振动信号中提取特征参数,是轴承故障诊断的关键问题,为此提出一种基于Morlet小波-奇异值分解(Singular Value Decomposition,SVD)和变量预测模型模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)的故障诊断方法。首先对时域采样信号进行Morlet小波变换预处理,将所得时频系数矩阵进行SVD分析,根据奇异值曲率谱特征滤除噪声,以提取相应尺度下的微弱故障信息;然后自适应选取最佳尺度附近的分量信号,并将Shannon能量熵作为特征参数,以此构建特征向量,用于建立基于VPMCD的故障识别模型。实验采用5折交叉验证法及Jackknife检验法对所提方法进行检验,结果证明了所提方法的有效性。
文摘如何在含有噪声的振动信号中提取故障特征,是轴承故障诊断的关键问题,为此本文提出一种基于本征时间尺度分解(Intrinsic Time-scale Decomposition,ITD)和敏感奇异值分解(Sensitive Singular Value Decomposition,SSVD)的故障诊断方法.首先对时域振动信号进行ITD预处理,并根据峭度准则选取包含故障信息的敏感旋转(Proper Rotation,PR)分量用于振动信号重构,以凸显振动信号局部特征;然后对此时频信号进行敏感SVD分析,通过敏感因子及定位因子选择敏感SVD分量重构信号,以滤除噪声干扰,提取微弱故障信息;最后利用Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)计算故障信息的瞬时能量,并对其进行频谱分析,获取故障特征频率,用于识别故障类型.将此方法应用于轴承故障诊断,实验证明了所提方法的有效性.