青藏高原多年冻土近地表土壤冻融循环会影响土壤和大气之间的水分与能量交换,研究其时空变化特征及对气候变化的响应对理解高原气候变化机制具有重要意义。本文基于通用陆面模式(Community Land Model 5.0,CLM5.0)计算1980-2017年高原...青藏高原多年冻土近地表土壤冻融循环会影响土壤和大气之间的水分与能量交换,研究其时空变化特征及对气候变化的响应对理解高原气候变化机制具有重要意义。本文基于通用陆面模式(Community Land Model 5.0,CLM5.0)计算1980-2017年高原多年冻土区近地表冻融参量,即土壤冻结开始时间、冻结结束时间、融化持续时间和冻结持续时间,并分析其时空变化及与近地表温度、降水量、积雪厚度和植被指数的相关性。结果表明:(1)高原多年冻土近地表土壤冻结开始时间集中于9月到10月中下旬,结束时间集中于2-5月。半湿润区土壤融化时间最长而半干旱区最短,平均相差15 d。高原多年冻土土壤冻融状态变化显著,除喀喇昆仑山脉附近外,大部分多年冻土地区显示冻结、融化持续时间分别具有缩短和增长趋势。高原平均土壤融化持续时间增长速率为2 d·(10a)^(-1),其中半湿润区增长趋势最为显著,达4 d·(10a)^(-1)。(2)高原多年冻土冻融参量与地理因子具有联系。在29°N-36°N和82.5°E-103°E融化持续时间呈增长趋势,但速率分别降低和增加。随着海拔升高,融化持续时间增长率降低。(3)高原多年冻土融化持续时间与积雪厚度、近地表温度、降水量以及植被指数均具有相关性且不同气候区域相关性不同。近地表温度在所有区域正相关性显著,是影响土壤冻融变化的主要因素。降水量与积雪厚度分别呈现正相关和负相关且均在半湿润区显著相关。植被指数全区基本呈现正相关,且半干旱区最显著,具有较强相关性。(4)高原多年冻土融化持续时间与不同季节气候因子相关性不同。近地表温度在季节尺度同样显著影响土壤冻融过程,其中春季最为显著。降水量在夏季为显著正相关,而冬季为负相关。积雪厚度和植被指数均在春季的半干旱和半湿润区存在显著相关性,分别呈负相关和正相关。(5)近地表温度在干湿季对高原多年冻土区域土壤冻融均有影响,而积雪深度、降水量和植被指数仅在湿季有较大影响。展开更多
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的...土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G_(0)=-9.1 W·m^(-2))和消融过程阶段(G_(0)=3.4 W·m^(-2))绝对值大于完全消融阶段(G_(0)=1.2 W·m^(-2)),土壤日冻融循环加强地表热通量交换。(3)能量闭合率为感热、潜热通量之和与净辐射通量、土壤热通量之差的比值。冻结过程、完全冻结、消融过程和完全消融阶段平均能量闭合率为1.44、1.56、0.99和0.81,消融过程和完全消融过程能量闭合率更趋近于1。土壤中存在日冻融循环时,冻结过程阶段土壤中的水冻结释放热量,高估土壤热通量从而高估能量闭合率,消融过程阶段土壤中的冰融化吸收热量,低估土壤热通量从而低估能量闭合率,影响地表能量收支平衡。展开更多
文摘青藏高原多年冻土近地表土壤冻融循环会影响土壤和大气之间的水分与能量交换,研究其时空变化特征及对气候变化的响应对理解高原气候变化机制具有重要意义。本文基于通用陆面模式(Community Land Model 5.0,CLM5.0)计算1980-2017年高原多年冻土区近地表冻融参量,即土壤冻结开始时间、冻结结束时间、融化持续时间和冻结持续时间,并分析其时空变化及与近地表温度、降水量、积雪厚度和植被指数的相关性。结果表明:(1)高原多年冻土近地表土壤冻结开始时间集中于9月到10月中下旬,结束时间集中于2-5月。半湿润区土壤融化时间最长而半干旱区最短,平均相差15 d。高原多年冻土土壤冻融状态变化显著,除喀喇昆仑山脉附近外,大部分多年冻土地区显示冻结、融化持续时间分别具有缩短和增长趋势。高原平均土壤融化持续时间增长速率为2 d·(10a)^(-1),其中半湿润区增长趋势最为显著,达4 d·(10a)^(-1)。(2)高原多年冻土冻融参量与地理因子具有联系。在29°N-36°N和82.5°E-103°E融化持续时间呈增长趋势,但速率分别降低和增加。随着海拔升高,融化持续时间增长率降低。(3)高原多年冻土融化持续时间与积雪厚度、近地表温度、降水量以及植被指数均具有相关性且不同气候区域相关性不同。近地表温度在所有区域正相关性显著,是影响土壤冻融变化的主要因素。降水量与积雪厚度分别呈现正相关和负相关且均在半湿润区显著相关。植被指数全区基本呈现正相关,且半干旱区最显著,具有较强相关性。(4)高原多年冻土融化持续时间与不同季节气候因子相关性不同。近地表温度在季节尺度同样显著影响土壤冻融过程,其中春季最为显著。降水量在夏季为显著正相关,而冬季为负相关。积雪厚度和植被指数均在春季的半干旱和半湿润区存在显著相关性,分别呈负相关和正相关。(5)近地表温度在干湿季对高原多年冻土区域土壤冻融均有影响,而积雪深度、降水量和植被指数仅在湿季有较大影响。