期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
NH_(3)和N_(2)混合等离子体预处理对锗MOS器件性能的影响
1
作者 乌李瑛 柏荣旭 +5 位作者 瞿敏妮 付学成 田苗 马玲 王英 程秀兰 《材料导报》 EI CAS CSCD 北大核心 2021年第14期14012-14016,共5页
对锗衬底进行NH 3和N 2混合等离子体(V(NH_(3))∶V(N_(2))=5∶1)原位预处理,其自然氧化层GeO_(x)反应生成GeO_(y)N_(z)。XPS结果显示,随着预处理时间的延长,GeO_(y)N_(z)厚度稍有增加。结构为500 nm Al/20 nm Ti/10 nm HfO_(2)/Ge的锗MO... 对锗衬底进行NH 3和N 2混合等离子体(V(NH_(3))∶V(N_(2))=5∶1)原位预处理,其自然氧化层GeO_(x)反应生成GeO_(y)N_(z)。XPS结果显示,随着预处理时间的延长,GeO_(y)N_(z)厚度稍有增加。结构为500 nm Al/20 nm Ti/10 nm HfO_(2)/Ge的锗MOS电容样品,在1 V的偏压下,未经过原位等离子体预处理的样品的漏电流密度为10^(-4) A/cm^(2)量级,而120 s NH_(3)/N_(2)混合等离子体预处理后的样品的漏电流密度减小到10^(-5) A/cm 2量级;所有等离子体预处理样品的C-V曲线不存在明显的翘曲变形,表明样品的界面陷阱电荷密度较低;通过C-V曲线计算可得,NH_(3)/N_(2)混合等离子体预处理60 s后样品的等效电容约为17,小于理想HfO_(2)的介电常数值,说明预处理条件下仍有不可忽略的层间电容。与其他预处理方法相比,NH_(3)/N_(2)混合等离子体原位预处理锗衬底可以更加有效地提高锗衬底上原子层沉积HfO_(2)层间界面的质量,抑制Ge向HfO_(2)的扩散,对界面的陷阱电荷有重要的限制作用。在提高锗MOS器件的性能方面,NH_(3)和N_(2)混合等离子体原位预处理的方法在工业生产中更具有潜在优势。 展开更多
关键词 锗MOS 原子层沉积 原位等离子体预处理 二氧化铪薄膜 高介电常数 漏电流密度
在线阅读 下载PDF
基于两步刻蚀工艺的锥形TSV制备方法 被引量:1
2
作者 田苗 刘民 +3 位作者 林子涵 付学成 程秀兰 吴林晟 《半导体技术》 CAS 北大核心 2024年第4期316-322,共7页
以硅通孔(TSV)为核心的2.5D/3D封装技术可以实现芯片之间的高速、低功耗和高带宽的信号传输。常见的垂直TSV的制造工艺复杂,容易造成填充缺陷。锥形TSV的侧壁倾斜,开口较大,有利于膜层沉积和铜电镀填充,可降低工艺难度和提高填充质量。... 以硅通孔(TSV)为核心的2.5D/3D封装技术可以实现芯片之间的高速、低功耗和高带宽的信号传输。常见的垂直TSV的制造工艺复杂,容易造成填充缺陷。锥形TSV的侧壁倾斜,开口较大,有利于膜层沉积和铜电镀填充,可降低工艺难度和提高填充质量。在相对易于实现的刻蚀条件下制备了锥形TSV,并通过增加第二步刻蚀来改善锥形TSV形貌。成功制备了直径为10~40μm、孔口为喇叭形的锥形TSV。通过溅射膜层和铜电镀填充,成功实现了直径为15μm、深度为60μm的锥形TSV的连续膜层沉积和完全填充,验证了两步刻蚀工艺的可行性和锥形TSV在提高膜层质量和填充效果方面的优势。为未来高密度封装领域提供了一种新的TSV制备工艺,在降低成本的同时提高了2.5D/3D封装技术的性能。 展开更多
关键词 硅通孔(TSV) 锥形 种子层 电镀填充 薄膜沉积
在线阅读 下载PDF
近红外铌酸锂光栅耦合器耦合效率优化研究 被引量:1
3
作者 刘思琦 瞿敏妮 谢微 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期113-120,共8页
提出了一种基于铌酸锂导模结构的高效光栅耦合器设计方案及其优化的光学激发配置.利用有限时域差分算法对光栅耦合器的耦合效果进行了数值分析;主要研究了光栅周期、光栅占空比、二氧化硅隔离层厚度,以及入射光的偏振和角度对光栅耦合... 提出了一种基于铌酸锂导模结构的高效光栅耦合器设计方案及其优化的光学激发配置.利用有限时域差分算法对光栅耦合器的耦合效果进行了数值分析;主要研究了光栅周期、光栅占空比、二氧化硅隔离层厚度,以及入射光的偏振和角度对光栅耦合效率的影响;对在共振波长和非共振波长处空间光传播电场图像进行了模拟.理论仿真结果显示,在光栅周期为650 nm、光栅占空比为0.3、刻蚀深度为130 nm时,利用横磁(transverse magnetic,TM)偏振光沿光栅法线夹角17°方向入射,可获得优化的光栅耦合效率~38%,从而有效地将空间光耦合进入铌酸锂亚波长波导薄膜中,这对铌酸锂微纳光栅耦合器的设计和性能应用有借鉴和参考价值. 展开更多
关键词 铌酸锂薄膜 导模共振 光栅耦合器 耦合效率
在线阅读 下载PDF
基于通孔双面分步填充的TSV制备方法 被引量:3
4
作者 田苗 栾振兴 +3 位作者 陈舒静 刘民 王凤丹 程秀兰 《半导体技术》 CAS 北大核心 2022年第8期636-641,共6页
以硅通孔(TSV)为核心的2.5D/3D集成技术是未来高密度封装的主导技术,但是现有的TSV制备技术需依赖高难度的技术和昂贵的设备。提出了一种通孔双面分步填充工艺,先将通孔的一端电镀封口,然后再从另外一端进行电镀填充。此方法避免了难度... 以硅通孔(TSV)为核心的2.5D/3D集成技术是未来高密度封装的主导技术,但是现有的TSV制备技术需依赖高难度的技术和昂贵的设备。提出了一种通孔双面分步填充工艺,先将通孔的一端电镀封口,然后再从另外一端进行电镀填充。此方法避免了难度很高的大深宽比孔中的种子层制备和自底向上的电镀工艺,降低了加工难度。通过工艺改进解决了狭缝缺陷和凸起/空洞缺陷问题,得到了无孔隙的填充孔径为30μm、孔深为300μm、深宽比为10∶1的TSV阵列。通过电学实验测量了所得TSV的电阻。实验结果证明了其填充效果和导电能力,为实现超小型化封装提供了新的技术思路。 展开更多
关键词 硅通孔(TSV) 通孔双面分步填充 电镀 缺陷 电阻率
在线阅读 下载PDF
纳米压印技术的发展及其近期的应用研究 被引量:6
5
作者 张笛 张琰 +1 位作者 孔路瑶 程秀兰 《传感器与微系统》 CSCD 北大核心 2022年第5期1-5,共5页
综述了热纳米压印、紫外纳米压印、微接触印刷三种具有代表性的纳米压印(NIL)技术的原理、工艺流程和优缺点,并介绍了近几年来纳米压印技术的研究进展及其在光学器件、存储器、柔性器件和生物传感器等领域中的应用现状。
关键词 热纳米压印 紫外纳米压印 微接触印刷 光学器件 存储器 柔性器件 生物传感器
在线阅读 下载PDF
聚焦离子束沉积铂纳米导线的电学失效机理
6
作者 瞿敏妮 乌李瑛 +4 位作者 黄胜利 凌天宇 沈贇靓 权雪玲 王英 《半导体技术》 CAS 北大核心 2021年第5期382-387,共6页
研究了聚焦离子束(FIB)沉积Pt纳米导线的电学失效行为及其机理。FIB沉积Pt纳米导线在集成电路修复和微型电极制备等领域有重要应用,其电学特性及失效行为研究对器件结构设计及性能测试具有重要意义。直流电学测试中电压接近9 V时,电流... 研究了聚焦离子束(FIB)沉积Pt纳米导线的电学失效行为及其机理。FIB沉积Pt纳米导线在集成电路修复和微型电极制备等领域有重要应用,其电学特性及失效行为研究对器件结构设计及性能测试具有重要意义。直流电学测试中电压接近9 V时,电流快速上升并发生断路。经扫描电子显微镜(SEM)和原位X射线能谱(EDS)分析发现,断路后Pt纳米导线中有球状结构析出,球状结构中Pt与C的原子数分数之比是原始薄膜中的4倍,周围物质变得疏松甚至发生局部断裂,且Pt的原子数分数降低,从而形成不导电结构。进一步对样品进行升温电学测试,结果表明,在120℃以上Pt纳米导线在内部电流与外部加热共同作用下发生Pt晶粒生长及团聚,使Pt空缺的间隙变大,从而造成Pt纳米导线的电学失效。 展开更多
关键词 聚焦离子束(FIB) 铂纳米导线 电学失效 铂晶粒团聚 升温电学测试
在线阅读 下载PDF
亚波长铌酸锂薄膜导模共振结构设计及二次谐波转化效率优化
7
作者 曹春雨 瞿敏妮 谢微 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期127-136,共10页
基于亚波长铌酸锂薄膜刻蚀导模共振超表面结构,理论模拟了超表面结构的光学响应特性,探讨了刻蚀微纳结构的周期、填充因子和刻蚀深度等参量对透射光谱的影响,同时研究了不同偏振态和入射角度的光源对光谱线宽的作用;利用非对称的光栅结... 基于亚波长铌酸锂薄膜刻蚀导模共振超表面结构,理论模拟了超表面结构的光学响应特性,探讨了刻蚀微纳结构的周期、填充因子和刻蚀深度等参量对透射光谱的影响,同时研究了不同偏振态和入射角度的光源对光谱线宽的作用;利用非对称的光栅结构设计,使连续谱中的束缚态(bound states in the continuum,BIC)衰退为高Q值(>10000)的准BIC模式;利用束缚态的局域场增强效应,将亚波长铌酸锂薄膜的二次谐波转化效率提升了5个数量级.模拟结果表明,当入射基频波的峰值功率密度在约1 GW/cm2量级时,可实现紫外波段二次谐波高效转化,即单次穿过亚波长铌酸锂薄膜后,出射的紫外波段二次谐波转化效率高达10–3量级.这为提升微纳结构、光学表界面体系的非线性响应特性提供了思路和设计方案. 展开更多
关键词 铌酸锂薄膜 光学超表面 导模共振 二次谐波
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部