This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibu...This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibull distribution parameters was conducted for different towns and zones within the province.The findings showed that Khaf has favorable characteristics for further analysis.The solar and wind energy metrics examined include global horizontal irradiance,clearness index,wind rose patterns,and turbulence intensity.At a height of 40 m,Khaf’s wind power density reached 1650 W/m^(2),indicating exceptional wind energy generation potential.Additionally,Khaf received an average annual solar radiation of 2046 kW·h/m^(2),representing significant solar energy potential.Harnessing these substantial renewable resources in Khaf could allow Razavi Khorasan Province to reduce reliance on fossil fuels,improve energy sustainability,and mitigate climate change impacts.This research contributes an in-depth assessment of Razavi Khorasan's solar and wind energy potential,particularly for the promising Khaf region.Further work may examine optimal sites for renewable energy projects and grid integration strategies to leverage these resources.展开更多
In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages inclu...In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field.展开更多
The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys th...The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.展开更多
Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temper...Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.展开更多
The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300...The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300-450 km/s at the Earth's orbit) the Solar Wind (SW) parameters in the absence of sporadic SW streams are examined. Within distances from the Sun's center less than R in the range of 20-30 Rs,(Rs, the solar radius), slow wind is known as the streamer belt, and at larger distances it is called the Heliospheric Plasma Sheet (HPS). It is shown that the streamer belt comprises a sequence of pairs of rays. In general, ray brightnesses in each pair can differ, and the magnetic field is oppositely directed in them. The neutral line of the radial magnetic field of the Sun runs along the belt between the rays of each of the pairs.The area in which the streamer belt intersects the ecliptic plane and which lies at the central meridian, will be recorded at the earth's orbit with a time delay of 5-6 days, in the form of one or several peaks with Nmax > 10 cm-3. Furthermore, the simplest density profile of the portion of the HCS has the form of two peaks of a different or identical amplitude . The such a profile is observed in cases where the angle of intersection of the streamer belt with the ecliptic plane near the Sun is sufficiently large, i.e. close to 90°. The two-ray structure of the cross-section of the streamer-belt moves from the Sun to the Earth, it retains not only the angular size of the peaks but also the relative density variations, and the position of the neutral line(sector boundary) in between. At the Earth's orbit the ray structure of the streamer belt provides the source for sharp (i.e. with steep fronts of a duration of a few minutes or shorter) solar wind plasma density peaks (of a duration of several hours) with maximum values Nmax > 10 cm-3.展开更多
A three-dimensional MHD simulation is conducted to study the steady solar wind in Carrington Rotation (CR) 1935 by using the three-dimensional numerical magnetohydrodynamic (MHD) model introduced by Feng et al The num...A three-dimensional MHD simulation is conducted to study the steady solar wind in Carrington Rotation (CR) 1935 by using the three-dimensional numerical magnetohydrodynamic (MHD) model introduced by Feng et al The numerical results demonstrate that the neutral current sheet has two peaks and two valleys, which is consistent with the result of PFSS model at Wilcox Solar Observatory (WSO). The obtained proton number density at 2.5 Rs is of the same order of magnitude as the result estimated from K-coronal brightness during the CRs 1733-1742 in 1983 made by Wei et al. The radial velocity profile along heliocentric distance is consistent with that of low solar wind speed deduced by Sheeley and Wang et al. However, it is not able to reproduce the fast-speed flow in coronal holes and slow solar wind in streamers because of oversimplified energy equation adopted in our model. Future efforts must be made to remedy this deficiency.展开更多
46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of und...46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasiparallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath.展开更多
In order to improve structure performance of the dish solar concentrator,a three-dimensional model of dish solar concentrator was established based on the high-precision numerical algorithms.And a virtual wind tunnel ...In order to improve structure performance of the dish solar concentrator,a three-dimensional model of dish solar concentrator was established based on the high-precision numerical algorithms.And a virtual wind tunnel experiment with constant wind is adopted to investigate the pressure distribution of the reflective surface,velocity distribution of the fluid domain for the dish solar concentrator in different poses and wind speeds distribution.Some results about wind pressure distribution before and after dish solar concentrator surface and wind load velocity distribution in the entire fluid domain had been obtained.In particular,it is necessary to point out that the stiffness at the center of the dish solar concentrator should be relatively raised.The results can provide a theoretical basis for the improvement of solar concentrator dish structure as well as the failure analysis of dish solar concentrator in engineering practice.展开更多
Alfvn waves are found to be ubiquitous in the solar wind.Recent progress in observational studies of the waves is reviewed to formulate a microscopic picture for the Alfvenic fluctuations. The main aspects of the ob...Alfvn waves are found to be ubiquitous in the solar wind.Recent progress in observational studies of the waves is reviewed to formulate a microscopic picture for the Alfvenic fluctuations. The main aspects of the observational properties of these waves,including the wave intervals, propagation,evolution,origin and generation,are presented.Then Alfven wave heating and acceleration of the solar wind plasma are briefly introduced.The relation of the waves to rotational and tangential discontinuities,magnetic decreases,and other relatively large-scale structures such as flux tubes/ropes,magnetic clouds and interplanetary coronal mass ejections in the solar wind is particularly investigated.Finally,some remaining open questions are also indicated due to their fundamental importance of understanding of the physical nature of Alfven waves and the role of the waves in heating and accelerating the solar wind.展开更多
When predicting parameters of quasi-stationary Solar Wind (SW) streams at 1 AU, it is customary to use, as the indicator of solar sources, the Bases of Open Magnetic Tubes (BOMT) on the solar surface obtained via a ca...When predicting parameters of quasi-stationary Solar Wind (SW) streams at 1 AU, it is customary to use, as the indicator of solar sources, the Bases of Open Magnetic Tubes (BOMT) on the solar surface obtained via a calculation relying on a new Bd-technique of harmonic expansion of the magnetic field from daily full-disk magnetograms developed by Rudenko[4]. By considering an example of 17 events, it is shown that the correspondence between fast SW streams at the Earth's orbit and the BOMT, calculated with ≤ 24 h time resolution, makes up about 94%, while the correspondence of SW stereams with the CH in the light of the 10830 A line is about 29%. With this technique, the predictability of maxima of the Kp index of magnetospheric disturbance caused by a fast quasi-stationary SW, is over 90%, and the prediction accuracy of the maximun velocity vm of the stream is ±15%.展开更多
This paper gives a brief outline of the progression from the first substorm model developed in Ref.[4] and [8] based on Kennel's ideas[3], to the present views about the mechanism by which solar wind kinetic energ...This paper gives a brief outline of the progression from the first substorm model developed in Ref.[4] and [8] based on Kennel's ideas[3], to the present views about the mechanism by which solar wind kinetic energy is converted to electromagnetic energy at the Bow Shock and by which this energy is transferred to the magnetosphere in the form of current; about the transformation of the energy of this current to gas kinetic energy of convecting plasma tubes, and, finally, the back transformation of gas kinetic energy to electromagnetic energy in secondary magnetospheric MHD generators. The questions of the formation of the magnetospheric convection system, the nature of substorm break-up, and of the matching of currents in the magnetosphere-ionosphere system are discussed.展开更多
Space solar power(SSP)system,a major type of space-based power-generating equipment,is an important infrastructure providing massive,continuous,and stable green electricity by utilizing solar energy in space.Many coun...Space solar power(SSP)system,a major type of space-based power-generating equipment,is an important infrastructure providing massive,continuous,and stable green electricity by utilizing solar energy in space.Many countries and organizations consider SSP to be one of the most promising clean energy sources.The historical activities of SSP in the world are summarized.This review focuses on the significant development of SSP during the last 10 years,which is the most important period for SSP.The latest international SSP development programmes in the United States,ESA,Japan,China,UK and Korea are presented.Some significant solar power satellite(SPS)concepts proposed in the decade,including typical SPS-ALPHA,MR-SPS,CASSIOPeiA SPS,et al.,are introduced.The technical and non-technical challenges are also listed and several important in-space demonstration missions in recent years and in the near future are introduced.The conclusion is that the next 5 to 10 years will be an important period for rapidly developing the key technologies and conducting on-orbit demonstration and application.Controlling the mutual position relationship between the solar array and the transmitting antenna becomes a core issue to be considered in the innovative design of the SPS.Wireless power transmission technologies would be the demonstration focus for the first step.It is expected that the first commercial SPS would be constructed as early as 2040.展开更多
In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional ...In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.展开更多
Constructing tandem solar cells(TSCs)is a strategy to enhance the power conversion efficiency(PCE)of single-junction photovoltaic technologies.Herein,efficient four-terminal(4 T)perovskite-organic TSCs are developed v...Constructing tandem solar cells(TSCs)is a strategy to enhance the power conversion efficiency(PCE)of single-junction photovoltaic technologies.Herein,efficient four-terminal(4 T)perovskite-organic TSCs are developed via precise control over the crystallization with co-anti-solvents in wide-bandgap perovskite(FA_(0.8) Cs_(0.2) Pb(I_(0.6) Br_(0.4))_(3),energy gap:1.77 eV)film.High-quality perovskite films can be achieved by employing a sophisticated co-anti-solvent technique,which effectively enhances the perovskite crystallinity with large grain size and suppresses the nonradiative recombination with pinhole-free surfaces.The results demonstrate that co-anti-solvents with a low boiling point polarity and nonpolar solvent contribute to superior performance of devices.The wide bandgap semi-transparent perovskite solar cell(ST-PSC)fabricated using co-anti-solvent exhibited a remarkable efficiency of 14.52%,and we successfully obtained an efficiency of 22.5%for 4 T perovskite-organic TSC.These findings inspire bright futures that TSCs could facilitate the development of more effective and sustainable solar energy solutions.展开更多
文摘This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibull distribution parameters was conducted for different towns and zones within the province.The findings showed that Khaf has favorable characteristics for further analysis.The solar and wind energy metrics examined include global horizontal irradiance,clearness index,wind rose patterns,and turbulence intensity.At a height of 40 m,Khaf’s wind power density reached 1650 W/m^(2),indicating exceptional wind energy generation potential.Additionally,Khaf received an average annual solar radiation of 2046 kW·h/m^(2),representing significant solar energy potential.Harnessing these substantial renewable resources in Khaf could allow Razavi Khorasan Province to reduce reliance on fossil fuels,improve energy sustainability,and mitigate climate change impacts.This research contributes an in-depth assessment of Razavi Khorasan's solar and wind energy potential,particularly for the promising Khaf region.Further work may examine optimal sites for renewable energy projects and grid integration strategies to leverage these resources.
文摘In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field.
基金Entrusted Fund of National Institute of Information and Communications Technology(NICT),Japan(JPJ012368C02401)。
文摘The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.
基金supported by the National Natural Science Foundation of China(52106276 and 52130601).
文摘Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.
基金Supported by the China-Russia Joint Research Center on Space Weather, Chinese Academy of Sciences
文摘The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300-450 km/s at the Earth's orbit) the Solar Wind (SW) parameters in the absence of sporadic SW streams are examined. Within distances from the Sun's center less than R in the range of 20-30 Rs,(Rs, the solar radius), slow wind is known as the streamer belt, and at larger distances it is called the Heliospheric Plasma Sheet (HPS). It is shown that the streamer belt comprises a sequence of pairs of rays. In general, ray brightnesses in each pair can differ, and the magnetic field is oppositely directed in them. The neutral line of the radial magnetic field of the Sun runs along the belt between the rays of each of the pairs.The area in which the streamer belt intersects the ecliptic plane and which lies at the central meridian, will be recorded at the earth's orbit with a time delay of 5-6 days, in the form of one or several peaks with Nmax > 10 cm-3. Furthermore, the simplest density profile of the portion of the HCS has the form of two peaks of a different or identical amplitude . The such a profile is observed in cases where the angle of intersection of the streamer belt with the ecliptic plane near the Sun is sufficiently large, i.e. close to 90°. The two-ray structure of the cross-section of the streamer-belt moves from the Sun to the Earth, it retains not only the angular size of the peaks but also the relative density variations, and the position of the neutral line(sector boundary) in between. At the Earth's orbit the ray structure of the streamer belt provides the source for sharp (i.e. with steep fronts of a duration of a few minutes or shorter) solar wind plasma density peaks (of a duration of several hours) with maximum values Nmax > 10 cm-3.
基金Supported by the National Natural Science Foundation of China (40374056, 40204010, 40536029)the International Collaboration Research Team Program of the Chinese Academy of Sciences
文摘A three-dimensional MHD simulation is conducted to study the steady solar wind in Carrington Rotation (CR) 1935 by using the three-dimensional numerical magnetohydrodynamic (MHD) model introduced by Feng et al The numerical results demonstrate that the neutral current sheet has two peaks and two valleys, which is consistent with the result of PFSS model at Wilcox Solar Observatory (WSO). The obtained proton number density at 2.5 Rs is of the same order of magnitude as the result estimated from K-coronal brightness during the CRs 1733-1742 in 1983 made by Wei et al. The radial velocity profile along heliocentric distance is consistent with that of low solar wind speed deduced by Sheeley and Wang et al. However, it is not able to reproduce the fast-speed flow in coronal holes and slow solar wind in streamers because of oversimplified energy equation adopted in our model. Future efforts must be made to remedy this deficiency.
基金Supported by NNSFC (No. 40325010)RFBR-NSFC (2005-2006)the China-Russia Joint Research Center on Space Weather,Chinese Academy of Sciences
文摘46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasiparallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath.
基金Projects(201208430262,201306130031)supported by the China Scholarship Council
文摘In order to improve structure performance of the dish solar concentrator,a three-dimensional model of dish solar concentrator was established based on the high-precision numerical algorithms.And a virtual wind tunnel experiment with constant wind is adopted to investigate the pressure distribution of the reflective surface,velocity distribution of the fluid domain for the dish solar concentrator in different poses and wind speeds distribution.Some results about wind pressure distribution before and after dish solar concentrator surface and wind load velocity distribution in the entire fluid domain had been obtained.In particular,it is necessary to point out that the stiffness at the center of the dish solar concentrator should be relatively raised.The results can provide a theoretical basis for the improvement of solar concentrator dish structure as well as the failure analysis of dish solar concentrator in engineering practice.
基金Supported by NSC grants to Prof.L.C.Lee in Taiwan(97-2111M-008-012-MY3 and 97-2811-M-008-039)PMO-NCU Cooperative Institutional Research Program,NSFC(10803020)the Opening Project of Key Laboratory of Solar Activity,CAS(KLSA201223)
文摘Alfvn waves are found to be ubiquitous in the solar wind.Recent progress in observational studies of the waves is reviewed to formulate a microscopic picture for the Alfvenic fluctuations. The main aspects of the observational properties of these waves,including the wave intervals, propagation,evolution,origin and generation,are presented.Then Alfven wave heating and acceleration of the solar wind plasma are briefly introduced.The relation of the waves to rotational and tangential discontinuities,magnetic decreases,and other relatively large-scale structures such as flux tubes/ropes,magnetic clouds and interplanetary coronal mass ejections in the solar wind is particularly investigated.Finally,some remaining open questions are also indicated due to their fundamental importance of understanding of the physical nature of Alfven waves and the role of the waves in heating and accelerating the solar wind.
基金Supported by the China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
文摘When predicting parameters of quasi-stationary Solar Wind (SW) streams at 1 AU, it is customary to use, as the indicator of solar sources, the Bases of Open Magnetic Tubes (BOMT) on the solar surface obtained via a calculation relying on a new Bd-technique of harmonic expansion of the magnetic field from daily full-disk magnetograms developed by Rudenko[4]. By considering an example of 17 events, it is shown that the correspondence between fast SW streams at the Earth's orbit and the BOMT, calculated with ≤ 24 h time resolution, makes up about 94%, while the correspondence of SW stereams with the CH in the light of the 10830 A line is about 29%. With this technique, the predictability of maxima of the Kp index of magnetospheric disturbance caused by a fast quasi-stationary SW, is over 90%, and the prediction accuracy of the maximun velocity vm of the stream is ±15%.
基金S.upported by RFBR project (No. 02-05-64066)the China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
文摘This paper gives a brief outline of the progression from the first substorm model developed in Ref.[4] and [8] based on Kennel's ideas[3], to the present views about the mechanism by which solar wind kinetic energy is converted to electromagnetic energy at the Bow Shock and by which this energy is transferred to the magnetosphere in the form of current; about the transformation of the energy of this current to gas kinetic energy of convecting plasma tubes, and, finally, the back transformation of gas kinetic energy to electromagnetic energy in secondary magnetospheric MHD generators. The questions of the formation of the magnetospheric convection system, the nature of substorm break-up, and of the matching of currents in the magnetosphere-ionosphere system are discussed.
基金Civil Aerospace Technology Research Project(D010103)。
文摘Space solar power(SSP)system,a major type of space-based power-generating equipment,is an important infrastructure providing massive,continuous,and stable green electricity by utilizing solar energy in space.Many countries and organizations consider SSP to be one of the most promising clean energy sources.The historical activities of SSP in the world are summarized.This review focuses on the significant development of SSP during the last 10 years,which is the most important period for SSP.The latest international SSP development programmes in the United States,ESA,Japan,China,UK and Korea are presented.Some significant solar power satellite(SPS)concepts proposed in the decade,including typical SPS-ALPHA,MR-SPS,CASSIOPeiA SPS,et al.,are introduced.The technical and non-technical challenges are also listed and several important in-space demonstration missions in recent years and in the near future are introduced.The conclusion is that the next 5 to 10 years will be an important period for rapidly developing the key technologies and conducting on-orbit demonstration and application.Controlling the mutual position relationship between the solar array and the transmitting antenna becomes a core issue to be considered in the innovative design of the SPS.Wireless power transmission technologies would be the demonstration focus for the first step.It is expected that the first commercial SPS would be constructed as early as 2040.
文摘In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.
基金Projects(U23A20138,52173192,52203250)supported by the National Natural Science Foundation of ChinaProject(2022YFB3803300)supported by the National Key Research and Development Program of ChinaProject supported by the State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘Constructing tandem solar cells(TSCs)is a strategy to enhance the power conversion efficiency(PCE)of single-junction photovoltaic technologies.Herein,efficient four-terminal(4 T)perovskite-organic TSCs are developed via precise control over the crystallization with co-anti-solvents in wide-bandgap perovskite(FA_(0.8) Cs_(0.2) Pb(I_(0.6) Br_(0.4))_(3),energy gap:1.77 eV)film.High-quality perovskite films can be achieved by employing a sophisticated co-anti-solvent technique,which effectively enhances the perovskite crystallinity with large grain size and suppresses the nonradiative recombination with pinhole-free surfaces.The results demonstrate that co-anti-solvents with a low boiling point polarity and nonpolar solvent contribute to superior performance of devices.The wide bandgap semi-transparent perovskite solar cell(ST-PSC)fabricated using co-anti-solvent exhibited a remarkable efficiency of 14.52%,and we successfully obtained an efficiency of 22.5%for 4 T perovskite-organic TSC.These findings inspire bright futures that TSCs could facilitate the development of more effective and sustainable solar energy solutions.