风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—...风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—长短记忆(LSTM)模型,提出独立预测法、分量预测法和多变量预测法等3种风速与风向联合预测方法,并利用兰新高铁大风监测实测数据对沿线多个基站的短期风速和风向进行同步联合预测。首先,通过归一化预处理原始风向和风速序列,并运用控制变量法确定最优时间步长和模型参数。其次,采用BPTT(Backpropagation Through Time)和Adam算法进行迭代训练,并结合早停法控制收敛,得到优化后的网络结构。最后,利用训练好的LSTM网络,采用3种方法对风速和风向进行联合预测。4个基站的实验结果表明,优化后的LSTM模型可以有效提取风速风向时间序列的长期依赖特征,结合联合预测方法能够实现对风速和风向的高精度同步预测;3种联合预测方法都能在较小范围内准确预测风速和风向,除5520基站外,风速预测误差在15%以内,风向预测误差在20%以内,其中多变量预测法表现出最优的整体预测精度,独立预测法次之。本研究为风速风向的联合预测提供了新的视角,对保障高铁列车运行的安全性具有参考价值。展开更多
风电场/场群规模化接入电网背景下,电网的故障暂态特性发生了根本性改变。然而,现有单机等值型无法精确表征风电场/场群的故障暂态特性。该文提出一种基于特征影响因子和改进人工神经网络反向传播(backpropagation neuronnetworks,BP)...风电场/场群规模化接入电网背景下,电网的故障暂态特性发生了根本性改变。然而,现有单机等值型无法精确表征风电场/场群的故障暂态特性。该文提出一种基于特征影响因子和改进人工神经网络反向传播(backpropagation neuronnetworks,BP)算法的直驱风机风电场建模方法。首先,建立直驱风机暂态模型,通过理论分析构建风机与公共连接点(point of common coupling,PCC)距离、直流侧限流措施投入情况、风速、出口处无功功率等故障特征影响因子。然后,对特征影响因子集计算欧式距离,基于改进最大最小距离法提取风机的分类初始中心。通过改进BP算法,以特征影响因子和分类初始中心为训练集,实现神经网络的快速收敛。最后,通过仿真算例,对所提方法进行验证。仿真结果表明,所述方法在收敛速度、建模精度方面,与传统BP算法和单机等值建模方法相比均有较大提升。展开更多
文摘风速和风向是影响高速列车运行安全的重要因素,对高铁沿线的大风风速和风向进行有效预测有助于及时地对列车运行状况进行评估和预警。目前高铁大风领域的研究主要集中在风速的预测,尚未考虑风速风向的联合预测。基于深度循环神经网络—长短记忆(LSTM)模型,提出独立预测法、分量预测法和多变量预测法等3种风速与风向联合预测方法,并利用兰新高铁大风监测实测数据对沿线多个基站的短期风速和风向进行同步联合预测。首先,通过归一化预处理原始风向和风速序列,并运用控制变量法确定最优时间步长和模型参数。其次,采用BPTT(Backpropagation Through Time)和Adam算法进行迭代训练,并结合早停法控制收敛,得到优化后的网络结构。最后,利用训练好的LSTM网络,采用3种方法对风速和风向进行联合预测。4个基站的实验结果表明,优化后的LSTM模型可以有效提取风速风向时间序列的长期依赖特征,结合联合预测方法能够实现对风速和风向的高精度同步预测;3种联合预测方法都能在较小范围内准确预测风速和风向,除5520基站外,风速预测误差在15%以内,风向预测误差在20%以内,其中多变量预测法表现出最优的整体预测精度,独立预测法次之。本研究为风速风向的联合预测提供了新的视角,对保障高铁列车运行的安全性具有参考价值。
文摘风电场/场群规模化接入电网背景下,电网的故障暂态特性发生了根本性改变。然而,现有单机等值型无法精确表征风电场/场群的故障暂态特性。该文提出一种基于特征影响因子和改进人工神经网络反向传播(backpropagation neuronnetworks,BP)算法的直驱风机风电场建模方法。首先,建立直驱风机暂态模型,通过理论分析构建风机与公共连接点(point of common coupling,PCC)距离、直流侧限流措施投入情况、风速、出口处无功功率等故障特征影响因子。然后,对特征影响因子集计算欧式距离,基于改进最大最小距离法提取风机的分类初始中心。通过改进BP算法,以特征影响因子和分类初始中心为训练集,实现神经网络的快速收敛。最后,通过仿真算例,对所提方法进行验证。仿真结果表明,所述方法在收敛速度、建模精度方面,与传统BP算法和单机等值建模方法相比均有较大提升。