The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs b...The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.展开更多
本研究探讨应用荧光染色试剂Calcofluor White M2R染色鉴别家蚕微孢子虫Nosema bombycis。结果表明:在荧光显微镜下可见家蚕微孢子虫孢子被染上强烈的青蓝色荧光,而寄主组织碎片、病毒、细菌等不被染色。该法是一种快速有效鉴别微孢子...本研究探讨应用荧光染色试剂Calcofluor White M2R染色鉴别家蚕微孢子虫Nosema bombycis。结果表明:在荧光显微镜下可见家蚕微孢子虫孢子被染上强烈的青蓝色荧光,而寄主组织碎片、病毒、细菌等不被染色。该法是一种快速有效鉴别微孢子虫的方法。展开更多
采用蝗虫翅膀作为侵染组织,探讨了荧光染色剂Calcofluor White M2R在观测寄主体表绿僵菌孢子及其附着孢形成中的应用。结果表明,在荧光显微镜下,清晰可见蝗虫翅膀上发蓝色荧光的绿僵菌孢子、芽管及附着孢,而蝗虫翅膀未被染色,避免了干...采用蝗虫翅膀作为侵染组织,探讨了荧光染色剂Calcofluor White M2R在观测寄主体表绿僵菌孢子及其附着孢形成中的应用。结果表明,在荧光显微镜下,清晰可见蝗虫翅膀上发蓝色荧光的绿僵菌孢子、芽管及附着孢,而蝗虫翅膀未被染色,避免了干扰观察目标物。该方法可以准确观察病原真菌孢子在昆虫体表组织的萌发及附着孢形成。展开更多
文摘The charge carrier transport and recombination dynamics in the quantum dots-based light-emitting diodes(QLEDs)featuring multiple emitting layers(M-EMLs)has a great impact on the device performance.In this work,QLEDs based on M-EMLs separated by polyethyleneimine ethoxylated(PEIE)layer with different stacking sequences of blue(B),green(G),and red(R)QDs layer were used to intuitively explore the injection,transportation and recombination processes of the charge carriers in QLEDs by using the time-resolved electroluminescence(TrEL)spectra.From the TrEL spectra mea-surements,green and red emissions were obtained first in the QLEDs with the EMLs sequences of G/PEIE/B/PEIE/R and B/PEIE/R/PEIE/G along the direction of light emission,respectively.While the QLEDs adopt EMLs sequences of B/PEIE/G/PEIE/R,the blue,green and red emissions were obtained nearly at the same time.The above phenomenon can be attributed to different charge carrier transmission and radiation recombination process in the EMLs due to different valence band offsets and conduction band offsets between R-,G-and B-QDs by using different sequences of EMLs.White emission with coordi-nates of(0.31,0.31)and correlated color temperature(CCT)of 5916 K was obtained in the QLEDs with the EMLs se-quences of B/PEIE/G/PEIE/R,which can be attributed to the relative uniform emission of B-,G-and R-QDs due to the effec-tive injection and radiation recombination of charge carriers in each of the EMLs.The above results have great significance for further understanding and improving the performance of QLEDs with M-EMLs.
文摘采用蝗虫翅膀作为侵染组织,探讨了荧光染色剂Calcofluor White M2R在观测寄主体表绿僵菌孢子及其附着孢形成中的应用。结果表明,在荧光显微镜下,清晰可见蝗虫翅膀上发蓝色荧光的绿僵菌孢子、芽管及附着孢,而蝗虫翅膀未被染色,避免了干扰观察目标物。该方法可以准确观察病原真菌孢子在昆虫体表组织的萌发及附着孢形成。