Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable thresh...Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.展开更多
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and imple...In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.展开更多
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(2011-035) supported by Shanxi Province Scholarship Foundation, China+2 种基金Project(20120010) supported by Universities High-tech Foundation Projects, ChinaProject (2013021016-1) supported by the Youth Science and Technology Foundation of Shanxi Province, ChinaProjects(2013011016-1, 2012011014-1) supported by the Natural Science Foundation of Shanxi Province, China
文摘Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.
文摘In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.