期刊文献+
共找到209篇文章
< 1 2 11 >
每页显示 20 50 100
Impulse Response Identification Based on Varying Scale Orthogonal Wavelet Packet Transform
1
作者 LIHe-Sheng MAOJian-Qin ZHAOMing-Sheng 《自动化学报》 EI CSCD 北大核心 2005年第4期567-577,共11页
In this paper, by applying a group of specific orthogonal wavelet packet to Eykho?algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPTis provided. In comparison to Eykho? al... In this paper, by applying a group of specific orthogonal wavelet packet to Eykho?algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPTis provided. In comparison to Eykho? algorithm, the new algorithm has better practicability andwider application range. Simulation results show that the proposed impulse response identificationalgorithm can be applied to both deterministic and random systems, and is of higher identificationprecision, stronger anti-noise interference ability and better system dynamic tracking property. 展开更多
关键词 微波转换 WPT 时间频率分析 Eykhoff算法 脉冲响应
在线阅读 下载PDF
基于WPD-ISSA-CA-CNN模型的电厂碳排放预测
2
作者 池小波 续泽晋 +1 位作者 贾新春 张伟杰 《控制工程》 北大核心 2025年第8期1387-1394,共8页
碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利... 碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利用小波包分解(wavelet packet decomposition,WPD)算法将信号按频率特性分解为子序列,再将全部分量增广(component augmentation,CA)作为模型输入,以减少模型的训练时间。其次,考虑到该模型超参数选择困难,利用多策略融合的改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对卷积神经网络(convolutional neural networks,CNNs)的超参数进行寻优。以山西某发电厂2×25 MW锅炉的历史数据为样本,利用5种评价指标将所提模型与BP、LSTM、CNN及其混合模型进行对比。结果表明,所提混合模型在预测火力发电碳排放中各指标均有最佳的准确度且模型训练速度明显提升。 展开更多
关键词 碳排放预测 小波包分解 改进麻雀搜索算法 卷积神经网络
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
3
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合核函数 支持向量机及其变体 超参数优化
在线阅读 下载PDF
基于改进北方苍鹰算法优化SVM的轴承故障诊断研究
4
作者 吴晓君 李渠伟 《机械强度》 北大核心 2025年第5期80-89,共10页
针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自... 针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization,NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization,PSO)算法、麻雀搜索算法(Sparrow Search Algorithm,SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 改进北方苍鹰优化算法 柯西变异策略 小波包分解 支持向量机
在线阅读 下载PDF
基于WP-TRP的滚动轴承故障诊断方法
5
作者 王娜 崔月磊 +1 位作者 罗亮 王子从 《东北大学学报(自然科学版)》 北大核心 2025年第3期20-27,共8页
针对故障诊断中传统时频域法提取特征时易受主观因素影响而导致冗余,且深度学习算法受训练数据影响导致计算复杂性较高的缺点,将时域和频域结合,提出一种基于小波包-无阈值递归图(WPTRP)的滚动轴承故障诊断方法.首先,提出递减信息熵准则... 针对故障诊断中传统时频域法提取特征时易受主观因素影响而导致冗余,且深度学习算法受训练数据影响导致计算复杂性较高的缺点,将时域和频域结合,提出一种基于小波包-无阈值递归图(WPTRP)的滚动轴承故障诊断方法.首先,提出递减信息熵准则,以克服小波包分解的主观性,获取更准确的时频域特征;在此基础上,引入无阈值递归图思想,充分提取数据初始时域特征,并利用奇异值分解进一步降低冗余特征,提高计算效率.然后,引入海洋捕食者算法来获得支持向量机最优参数,实现故障诊断的准确分类.最后,通过标准滚动轴承数据集仿真验证了所提方法的有效性. 展开更多
关键词 故障诊断 小波包分解 信息熵 无阈值递归图 奇异值分解 海洋捕食者算法
在线阅读 下载PDF
NLFM-16QAM雷达通信一体化信号设计与处理方法
6
作者 国强 董欣玥 戚连刚 《哈尔滨工业大学学报》 北大核心 2025年第10期123-134,共12页
在雷达通信一体化领域,设计出既能实现雷达探测功能又能实现通信信息传输功能的同波形信号是至关重要的一个环节。针对在雷达信号脉冲内对通信信息调制后自相关性能低的问题,提出一种高频带利用率以及低自相关旁瓣的基于非线性调频(NLFM... 在雷达通信一体化领域,设计出既能实现雷达探测功能又能实现通信信息传输功能的同波形信号是至关重要的一个环节。针对在雷达信号脉冲内对通信信息调制后自相关性能低的问题,提出一种高频带利用率以及低自相关旁瓣的基于非线性调频(NLFM)信号的雷达通信一体化信号形式。将NLFM信号作为16阶正交幅度调制(16QAM)信号的载波,建立NLFM-16QAM雷达通信一体化信号模型,分析该信号的模糊函数以及相关的雷达与通信性能。在此基础上,针对所提出的NLFM-16QAM信号因其通信基带信号的随机性使雷达功能受到影响,从而降低了运动目标探测性能这一问题,将一体化系统的接收端作出改进,提出小波包降噪联合自然梯度算法对NLFM-16QAM信号进行接收处理。仿真结果表明,所提信号的频带利用率明显高于低阶调制的雷达通信一体化信号的频带利用率,在自相关性能方面,所提信号比16QAM-LFM信号的积分旁瓣比降低了23.07 d B,峰值旁瓣比降低了26.08 d B,NLFM-16QAM信号在经过改进接收端的联合算法处理后,运动目标的检测结果获得显著改善。 展开更多
关键词 雷达通信一体化 信号设计 非线性调频信号 自相关性能 小波包降噪 自然梯度算法
在线阅读 下载PDF
调心轴承退化特性WPES提取及FOA-GRNN算法预测分析
7
作者 张海霞 李灿 《机械设计与制造》 北大核心 2025年第6期159-162,共4页
目前轴承剩余寿命预测需要采用大量历史经验作为判断依据,导致最终的预测结果相对实际测试情况形成了较大的偏差。这里以小波包能量谱WPES的方法对轴承退化特征进行了提取分析,并利用FOA-GRNN模型使GRNN获得更高精度的预测结果,根据多... 目前轴承剩余寿命预测需要采用大量历史经验作为判断依据,导致最终的预测结果相对实际测试情况形成了较大的偏差。这里以小波包能量谱WPES的方法对轴承退化特征进行了提取分析,并利用FOA-GRNN模型使GRNN获得更高精度的预测结果,根据多种群自适应果蝇优化算法进行数据分析获得GRNN扩展速度,实现了轴承剩余寿命的准确预测。研究结果表明:FOA-GRNN方法预测获得的均方误差为0.0034,形成了0.0532的绝对误差,均方根误差为0.06025,轴承退化特征能够满足轴承剩余寿命精确预测的要求。FOA-GRNN指标参数最小,达到了理想的效果,表现出了最优的收敛性,寻优效率与精度同时获得大幅提升。该研究对提高调心轴承故障诊断和寿命预测具有一定的理论支撑作用,可以拓宽到其它的机械传动故障信号分析领域。 展开更多
关键词 调心轴承 使用寿命 预测精度 小波包能量谱 广义回归神经网络 果蝇优化算法 退化特性 实验分析
在线阅读 下载PDF
基于SSA-GPR和WPD的电池剩余寿命预测
8
作者 傅鑫 王靖岳 +1 位作者 朱楠 丁建明 《科学技术与工程》 北大核心 2025年第23期10023-10030,共8页
快速准确地获取锂离子电池的剩余使用寿命,对提高设备的可靠性有着重要意义。针对传统高斯过程回归(gaussian process regression,GPR)超参数寻优效果差,寻优困难,利用麻雀搜索算法(sparrow search algorithm,SSA)对高斯过程回归进行超... 快速准确地获取锂离子电池的剩余使用寿命,对提高设备的可靠性有着重要意义。针对传统高斯过程回归(gaussian process regression,GPR)超参数寻优效果差,寻优困难,利用麻雀搜索算法(sparrow search algorithm,SSA)对高斯过程回归进行超参数优化,同时利用小波包分解(wavelet packet decomposition,WPD)降低数据集复杂度,提取相关信息,增加预测精度,提出了将小波包分解和高斯过程回归以及麻雀搜索算法相结合,建立剩余使用寿命(remaining useful life,RUL)预测模型。首先,等压降放电时间曲线作为间接健康因子,电池容量作为直接健康因子,利用Pearson系数验证二者的相关性。其次,利用小波包分解对直接健康因子与间接健康因子进行分解,提取出高频信号和低频信号并将这些信号分为训练集与测试集。然后,建立高斯过程回归模型,利用SSA对该模型进行超参数优化,分别对不同信号进行预测、叠加,实现剩余使用寿命的准确预测。最后,利用公开数据集进行验证。结果表明,本文提出的模型平均绝对误差不超过0.0065、平均绝对百分比误差不超过0.0052,均方根误差不超过0.0078,拥有良好的预测精度和泛化性。 展开更多
关键词 剩余使用寿命 麻雀搜索算法 高斯过程回归 小波包分解
在线阅读 下载PDF
基于改进EMD的爆破振动信号降噪方法研究 被引量:3
9
作者 闫鹏 张云鹏 +1 位作者 周倩倩 杨曦 《振动与冲击》 北大核心 2025年第1期212-220,共9页
针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类... 针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类特性以及小波包的降噪优势,不仅可以有效抑制端点效应,也具有良好的降噪效果。研究结果表明:在仿真信号端点效应抑制试验中,与多项式拟合和边界局部特征延拓方法相比,改进EMD方法的能量误差和均方误差最小。在实测爆破振动信号降噪中,与EMD和变分模态分解(VMD)方法相比,改进EMD方法的信噪比(20.94 dB)最大,均方根误差(0.0031)最小。改进EMD方法不仅可以较好保存中低频(0~200 Hz)信号能量,对200 Hz以上高频噪声也具有良好滤除效果。 展开更多
关键词 经验模态分解(EMD) 爆破振动信号 端点效应 K-MEANS算法 小波包 降噪
在线阅读 下载PDF
包装机深沟球轴承多模态智能诊断模型与自适应参数优化研究
10
作者 车畅 李明辉 +1 位作者 马晨佩 亓梦元 《包装工程》 北大核心 2025年第19期247-257,共11页
目的针对包装机深沟球轴承在高速启停、高粉尘湿环境下的早期故障难检测问题,研究多模态特征融合与智能算法优化的故障诊断方法,以提升设备的运维效率。方法鉴于传统深度置信网络用于状态监测与故障诊断时存在结构复杂、训练困难及参数... 目的针对包装机深沟球轴承在高速启停、高粉尘湿环境下的早期故障难检测问题,研究多模态特征融合与智能算法优化的故障诊断方法,以提升设备的运维效率。方法鉴于传统深度置信网络用于状态监测与故障诊断时存在结构复杂、训练困难及参数无法自适应选取等问题,通过构建“小波包变换(WPT)+麻雀搜索算法(SSA)+深度置信网络(DBN)”多模态智能诊断模型,利用WPT提取时域、频域及能量特征,降低输入维度;引入SSA自适应优化DBN的网络层数、隐含层节点数及学习率,解决传统DBN参数依赖经验的问题,实现参数自适应选取,从而更准确、快速地识别轴承故障状态。结果多模态智能模型对包装机深沟球轴承正常状态诊断准确率达到100%,不同程度的内圈、外圈、滚动体故障平均诊断准确率分别提升至98.58%、97.75%、98.42%,训练时间缩短约1 min。结论通过优化模型可有效解决包装机深沟球轴承在复杂工况下的诊断难题,为包装机预知性维护提供了智能诊断方案。 展开更多
关键词 包装机 深沟球轴承 小波包变换 麻雀搜索算法
在线阅读 下载PDF
基于改进优化算法的WELM月径流预测模型研究 被引量:3
11
作者 王应武 华春莉 茶建帮 《人民长江》 北大核心 2025年第2期82-90,共9页
针对在月径流预测中将传统数据分解技术直接应用于整个时间序列时,在模型训练过程中会提前使用“未来信息”从而导致预测结果“不可信”的问题,提出两种不引入“未来信息”的小波包变换(WPT)-改进蝴蝶优化算法(IBOA)/改进海马优化(ISHO... 针对在月径流预测中将传统数据分解技术直接应用于整个时间序列时,在模型训练过程中会提前使用“未来信息”从而导致预测结果“不可信”的问题,提出两种不引入“未来信息”的小波包变换(WPT)-改进蝴蝶优化算法(IBOA)/改进海马优化(ISHO)算法-加权极限学习机(WELM)月径流时间序列预测模型。首先,将月径流时间序列划分为训练集和预测集,利用WPT分别对训练集和预测集进行分解处理,避免在训练过程中提前使用“预测集信息”;其次,通过6个典型函数验证IBOA/ISHO的寻优能力,利用IBOA/ISHO优化WELM输入层权值和隐含层偏差(简称“超参数”),建立WPT-IBOA/ISHO-WELM模型对各分解分量进行预测和重构;同时构建基于整个时间序列分解的WPT-IBOA/ISHO-WELM(全)模型,与其他4种优化算法和未经分解、未经优化的IBOA/ISHO-WELM、WPT-WELM模型作对比分析;最后,通过云南省李仙江流域把边、景东水文站月径流时间序列预测实例对各模型进行检验。结果表明:①WPT-IBOA-WELM、WPT-ISHO-WELM模型对把边、景东站月径流预测的平均绝对百分比误差(MAPE)为1.649%~1.897%,预测精度优于其他对比模型,具有更好的预测效果。②WPT-IBOA-WELM、WPT-ISHO-WELM模型的预测精度基本不受“未来信息”的影响,能客观真实反映出月径流预测效果,具有较好的实用意义。③IBOA/ISHO仿真精度和WELM超参数优化效果均优于其他优化算法,表明通过logistic映射等策略可以显著提升IBOA/ISHO优化性能。 展开更多
关键词 月径流预测 小波包变换 改进蝴蝶优化算法 改进海马优化算法 加权极限学习机 超参数优化 把边水文站 景东水文站 李仙江流域
在线阅读 下载PDF
多传感器信息融合技术下变电站汇控柜状态监测方法
12
作者 杨洋 谢青洋 苏适 《传感技术学报》 北大核心 2025年第7期1208-1213,共6页
对变电站汇控柜的状态展开实时传感监测,能够有效预防由变电站故障引起的停电、火灾等情况的发生,为此,提出一种基于多传感器信息融合技术的变电站汇控柜状态监测方法。通过分布图和自适应加权法实现不同传感器的变电站汇控柜数据信息融... 对变电站汇控柜的状态展开实时传感监测,能够有效预防由变电站故障引起的停电、火灾等情况的发生,为此,提出一种基于多传感器信息融合技术的变电站汇控柜状态监测方法。通过分布图和自适应加权法实现不同传感器的变电站汇控柜数据信息融合,以提高融合后状态信息的准确性。对融合后的变电站汇控柜状态信息进行小波包分解,并对分解系数进行重构,以提取关键的状态特征。将提取到的状态特征输入到最小二乘支持向量机模型中,实现对变电站汇控柜状态的监测和分类。实验结果表明,所提方法融合处理汇控柜信息的时间低于45 ms,特征提取准确率高于95%,监测信息与真实信息基本一致,汇控柜状态监测效果较好。 展开更多
关键词 变电站汇控柜 状态监测 多传感器信息融合 小波包分解 自适应加权算法
在线阅读 下载PDF
基于GASF-BMKELM的滚动轴承故障诊断方法
13
作者 杨锡发 王林军 +3 位作者 邹腾枭 吴振雄 李响 陈保家 《三峡大学学报(自然科学版)》 北大核心 2025年第4期96-103,共8页
针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning m... 针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning machine,BMKELM)的故障诊断方法.首先,应用小波包节点对数能量与格拉姆角和场(GASF)将原始振动信号变换为小波包对数能量图特征;其次,使用多项式核函数与径向基核函数加权组合构建多核极限学习机(multi-kernel extreme learning machine,MKELM),同时,利用贝叶斯优化算法优化多核极限学习机的参数来提升诊断模型的故障识别能力;最后,以小波包对数能量图特征作为输入,再使用BMKELM模型完成故障特征识别与分类.通过两个数据集进行验证分析,实验结果表明,所提方法的准确率分别为99.39%和98.89%,具有较高的故障识别率和稳定性. 展开更多
关键词 滚动轴承 格拉姆角和场 小波包对数能量图 多核极限学习机 贝叶斯优化算法 故障诊断
在线阅读 下载PDF
考虑使用寿命延长的电池储能平抑光伏分组功率分配方法
14
作者 余洋 霍宇航 +4 位作者 吴千 李梦璐 王卜潇 郑晓明 蔡新雷 《电网与清洁能源》 北大核心 2025年第9期83-94,共12页
在平抑光伏功率波动过程中,电池储能系统(battery energy storage system,BESS)因保持持续充、放电状态而导致寿命损耗较大。基于电池分组控制技术,提出考虑寿命延长的BESS平抑光伏分组功率分配办法。设计了食肉植物算法优化的改进雨流... 在平抑光伏功率波动过程中,电池储能系统(battery energy storage system,BESS)因保持持续充、放电状态而导致寿命损耗较大。基于电池分组控制技术,提出考虑寿命延长的BESS平抑光伏分组功率分配办法。设计了食肉植物算法优化的改进雨流计数法,以获取光伏并网功率指令;利用小波包分解确定电池组数量及容量,同时根据设计的充、放电原则形成电池组的功率调节指令;进行电池组组别重置时,将BESS中诸多电池单元进行有序分配;提出二次功率分配策略,获取各电池单元的功率调节指令,二次分配时还应用了重复补发原则以最大限度跟踪功率调节指令,并保证组内电池单元荷电状态均衡。对所提功率分配方法进行了仿真验证,并与其他5种策略进行了对比,结果表明,所提功率分配方法实现了BESS对于功率调节指令的更好跟踪,降低了光伏并网功率波动率,延长了电池单元的使用寿命。 展开更多
关键词 电池寿命损耗 雨流计数法 食肉植物算法 小波包分解 光伏平抑
在线阅读 下载PDF
基于软件无线电的硬件木马检测方法
15
作者 王小龙 黄永辉 +1 位作者 朱翔 张琬迎 《计算机工程与设计》 北大核心 2025年第5期1364-1370,共7页
针对日趋复杂的集成电路芯片,供应链全球化导致生产过程中不可控因素增多,芯片的硬件木马问题防不胜防,提出一种基于软件无线电设备采集的侧信道信号进行硬件木马检测的方法。通过软件无线电设备采集芯片在不同工作状态下对外的电磁辐... 针对日趋复杂的集成电路芯片,供应链全球化导致生产过程中不可控因素增多,芯片的硬件木马问题防不胜防,提出一种基于软件无线电设备采集的侧信道信号进行硬件木马检测的方法。通过软件无线电设备采集芯片在不同工作状态下对外的电磁辐射信号,利用小波包变换提取频谱信息,利用机器学习分类判别加以区分有无硬件木马。实验结果表明,采集的电磁侧信道信息包含了检测硬件木马的所需信息,硬件木马检测的准确率可达99.8%。 展开更多
关键词 硬件木马 软件无线电 电磁侧信道 信号处理 小波包变换 机器学习 随机森林算法
在线阅读 下载PDF
基于数据分解与十种“植物”算法优化的RELM地下水位预测
16
作者 田宇 崔东文 +1 位作者 毛宗波 李锐 《水利水电技术(中英文)》 北大核心 2025年第9期118-130,共13页
【目的】提高地下水位时间序列预测精度对于科学预判地下水位变化趋势、合理开发和利用地下水资源具有重要意义。为提高地下水位时间序列预测精度,解决数据分解组合时间序列预测模型计算规模大、复杂程度高等问题【方法】基于小波包分解... 【目的】提高地下水位时间序列预测精度对于科学预判地下水位变化趋势、合理开发和利用地下水资源具有重要意义。为提高地下水位时间序列预测精度,解决数据分解组合时间序列预测模型计算规模大、复杂程度高等问题【方法】基于小波包分解(WPT)、入侵杂草优化(IWO)算法/花授粉算法(FPA)/树木生长算法(TGA)/向日葵优化(SFO)算法/食肉植物算法(CPA)/蒲公英优化(DO)算法/常春藤算法(IVYA)/青蒿素优化(AO)算法/苔藓生长优化(MGO)算法/莲花效应优化算法(LEA)共十种“植物”算法和正则化极限学习机(RELM),提出基于WPT分解处理的IWO/FPA/TGA/SFO/CPA/DO/IVYA/AO/MGO/LEA-RELM预测模型,并通过云南省西城、南庄、临安、文澜、者林寨、植物园6个地下水位时间序列预测实例对各模型进行验证。首先,利用1层WPT将实例地下水位时间序列分解为趋势项和波动项,并基于趋势项和波动项训练集构建RELM超参数优化实例目标函数;其次,利用十种“植物”算法对实例目标函数进行极值寻优,获得各算法最优超参数;最后,利用最优超参数构建IWO/FPA/TGA/SFO/CPA/DO/IVYA/AO/MGO/LEA-RELM模型对实例地下水位时间序列趋势项和波动项进行预测和重构。【结果】结果显示:IVYA、CPA、FPA寻优性能优于IWO、AO、SFO、DO,远优于LEA、MGO、TGA;IVYA-RELM、CPA-RELM、FPA-RELM模型预测的平均绝对百分比误差(MAPE)在0.0030%~0.0004%之间,平均绝对误差(MAE)在0.0389~0.0063 m之间,决定系数(DC)在0.9977~0.9998之间,预测精度优于其他对比模型,具有较好的预测效果。【结论】结果表明:十种“植物”算法的寻优性能排名与十种组合模型的拟合精度、预测精度排名具有高度的一致性。总体上,算法寻优能力越强,组合模型的拟合、预测精度越高,性能越好;WPT分解分量少、分量规律性强,是一种简介高效的分解方法。 展开更多
关键词 地下水位预测 小波包分解 十种“植物”算法 正则化极限学习机 实例目标函数 超参数优化 影响因素
在线阅读 下载PDF
Application of Wavelet Random Coupling Model in Monthly Rainfall Prediction
17
作者 DONG Lili XU Shuqin LIU Yang WANG Yunhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2011年第4期65-69,共5页
A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond wi... A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond with wavelet transform sequence was established, finally wavelet random coupling model was obtained by wavelet reconstruction algorithm. Then, according to the rainfall data in crop growth period of Farm Chahayang from 1956 to 2008, the wavelet random coupling model was established to fit the model prediction test. The results showed that the prediction and fitting accuracy of the model was high, the model could reflect the rainfall variation regulation in the region, and it was a practical prediction model. It was very important for us to determine reasonably irrigation schedule and to use efficiency coefficient of precipitation resource. 展开更多
关键词 wavelet random coupling model Farm Chahayang rainfall forecast trous algorithm
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:9
18
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习机 小波包变换 超参数优化
在线阅读 下载PDF
基于WPT-IDBO-RELM和WPT-IDMO-RELM模型的日径流预测 被引量:5
19
作者 李菊 崔东文 《水利水电科技进展》 CSCD 北大核心 2024年第6期48-55,85,共9页
为提高日径流时间序列预测精度,改进正则化极限学习机(RELM)的预测性能,对比验证改进蜣螂优化(IDBO)算法和改进侏獴优化(IDMO)算法与其他算法的优化效果,提出了基于小波包变换(WPT)的WPT-IDBO-RELM和WPT-IDMO-RELM日径流时间序列预测模... 为提高日径流时间序列预测精度,改进正则化极限学习机(RELM)的预测性能,对比验证改进蜣螂优化(IDBO)算法和改进侏獴优化(IDMO)算法与其他算法的优化效果,提出了基于小波包变换(WPT)的WPT-IDBO-RELM和WPT-IDMO-RELM日径流时间序列预测模型。对云南省暮底河水库、马鹿塘电站入库日径流进行预测,结果表明WPT-IDBO-RELM和WPT-IDMO-RELM模型对暮底河水库日径流预测的平均绝对百分比误差分别为1.048%、1.015%,对马鹿塘电站日径流预测的平均绝对百分比误差分别为1.493%、1.478%,优于其他对比模型;IDBO、IDMO算法对标准测试函数和实例目标函数的寻优效果均优于其他对比算法,且IDBO、IDMO算法优化效果越好,RELM超参数越优,WPT-IDBO-RELM、WPT-IDMO-RELM模型预测精度越高;WPT可将日径流序列分解为分量更少、规律性更强的子序列分量,在提高预测精度的同时显著降低模型复杂度和计算规模。 展开更多
关键词 日径流预测 正则化极限学习机 改进蜣螂优化算法 改进侏獴优化算法 小波包变换
在线阅读 下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别 被引量:2
20
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的BP神经网络
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部