The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical chal...The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis,particularly elucidating hydrogen and oxygen evolution reaction(HER/OER)mechanisms while addressing the persistent activity-stability trade-off.This review summarizes their decade-long progress in developing advanced electrodes,analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations.Professor Wei proposes a unifying"12345 Principle"as an optimization framework.For HER electrocatalysts,they have identified that metal/metal oxide interfaces create synergistic"chimney effect"and"local electric field enhancement effect",enhancing selective intermediate adsorption,interfacial water enrichment/reorientation,and mass transport under industrial high-polarization conditions.Regarding OER,innovative strategies,including dual-ligand synergistic modulation,lattice oxygen suppression,and self-repairing surface construction,are demonstrated to balance oxygen species adsorption,optimize spin states,and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement.The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.展开更多
Exhaust hot water(EHW)is widely used for various industrial processes.However,the excess heat carried by EHW is typically ignored and discharged into the environment,resulting in heat loss and heat pollution.An organi...Exhaust hot water(EHW)is widely used for various industrial processes.However,the excess heat carried by EHW is typically ignored and discharged into the environment,resulting in heat loss and heat pollution.An organic Rankine cycle(ORC)is an attractive technology to recycle heat from low-temperature energy carriers.Herein,ORC was used to recycle the heat carried by EHW.To investigate the energy and exergy recovery effects of EHW,a mathematical model was developed and a parametric study was conducted.The energy efficiency and exergy efficiency of the EHW-driven ORC system were modeled with R245fa,R113 and R123 as the working fluids.The results demonstrate that the EHW and evaporation temperatures have significant effects on the energy and exergy efficiencies of the EHW-driven ORC system.Under given EHW conditions,an optimum evaporation temperature exists corresponding to the highest exergy efficiency.To further use the low-temperature EHW,a configuration retrofitted to the ORC by combining with flash evaporation(FE)was conducted.For an EHW at 120℃ and 0.2 MPa,the maximum exergy efficiency of the FE-ORC system is 45.91%at a flash pressure of 0.088 MPa.The FE-ORC performs better in exergy efficiency than the basic FE and basic EHW-driven ORC.展开更多
A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the ne...A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.展开更多
The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume eve...The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume even to cancel the tank,a novel structure of integrated water pipe floor heating system using shape-stabilized phase change materials(SSPCM)for thermal energy storage was developed.A numerical model was developed to analyze the performance of SSPCM floor heating system under the intermittent heating condition,which was verified by our experimental data.The thermal performance of the heating system and the effects of various factors on it were analyzed numerically.The factors including phase transition temperature,heat of fusion,thermal conductivity of SSPCM and thermal conductivity of the decoration material were analyzed.The results show that tm and kd are the most import influencing factors on the thermal performance of SSPCM floor heating system,since they determine the heat source temperature and thermal resistance between SSPCM plates and indoor air,respectively.Hm should be large to store enough thermal energy in the day time for nighttimes heating.The effects of kp can be ignored in this system.The SSPCM floor heating system has potential of making use of the daytime solar energy for heating at night efficiently in various climates when its structure is properly designed.展开更多
Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in seri...Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in series in the system.This experiment of the energy-saving air-conditioner was carried out in the enthalpy-difference air-conditioner laboratory.The hot water temperature and the compressor's discharge and suction pressure were recorded in the working condition,where the ambient temperature was at 43 ℃,35 ℃,21 ℃,7 ℃,and 2 ℃ separately.The results showed that the system operated stably and reliably.This system can supply 240 L hot water at 50 ℃ in the whole year,and its coefficience of performance(COP)is much higher than the conventional air source heat pump system.Its energy conservation was proved by comparing the thermal efficiency with other sourece water heaters.展开更多
Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies ...Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies was studied through the water splitting for O2 evolution, using a high pressure mercury lamp as the light source and Fe^3+ as the electron acceptor in two different devices: an ordinary photolysis device with catalyst powder suspending through a magnetic stirrer and a self-assembly light energy conversion device. The results show that after 12 h irradiation, the photocatalytic activity of 2.0%WO3-TiO2 with oxygen vacancies in the self-assembly light energy conversion device is higher than that of the ordinary photolysis device, and the amount of oxygen evolution is about 12 and 9 mmol/L respectively in these two devices. After 12 h, the rates of 02 evolution are slow in each device and the photocatalyst almost loses the photoactivity in the ordinary photolysis device. So, compared with the ordinary photocatalytic device, the rate of oxygen evolution and the life time of the catalyst are improved in the self-assembly light energy conversion device.展开更多
To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the ...To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.展开更多
Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity ar...Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.展开更多
While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and ...While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.展开更多
Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,inclu...Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications.展开更多
Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a num...Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended.展开更多
The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplore...The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.展开更多
Buckypapers(BPs)consist of carbon nanotube(CNT)membranes with good mechanical,thermal and elec-trical properties.We report the modification of CNT buckypapers by the surface deposition of a thin layer of ti-tanium dio...Buckypapers(BPs)consist of carbon nanotube(CNT)membranes with good mechanical,thermal and elec-trical properties.We report the modification of CNT buckypapers by the surface deposition of a thin layer of ti-tanium dioxide and their subsequent photocatalytic use for the removal of three wastewater pollutants:diclofenac(DF),carbofuran(CB)and methylene blue(MB).The results show the following decreases(RE)in the initial concentrations of these pollutants,REDF=99.5%,REMB=96%and RECB=90%after 90 min of exposure to UV-Vis radiation using~0.6 mg of photocatalyst.Experiments also showed that the degradation rate of diclofenac(k=0.1028 min^(−1))is respectively 3.5 and 6 times faster than the values for CB(k=0.0298 min^(−1))and MB(k=0.0174 min^(−1)),probably due to the easier bond cleavage in DF.UV-Vis irradiated solutions of these pollutants were then analyzed by mass spectrometry to identify the species formed during photocatalysis and suggest possible degradation paths for MB,DF,and CB.Data showed that the degradation of DF involves the formation of a photocyclization product through loss of HCl molecule,clearly consuming less energy than that needed for the opening of the central aromatic ring in MB,or the loss of the N-methyl amide functional group for CB.展开更多
The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)...The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)are susceptible to pH-dependent dissolution in water,which can result in the loss of photocatalysts and additional environ-mental pollution.To obtain zinc oxide-based composites with low dissolution and high antibacterial efficiency for pho-tocatalytic water disinfection,we prepared MoS_(2)/ZnO@CS composites via a precipitation method to encapsulate chitosan(CS)around MoS_(2)/ZnO.The amino groups in the CS molecules act as storerooms for hydrogen ions,which inhibits the dissolution of zinc oxide.In addition,the MoS_(2)/ZnO@CS composites exhibit high production of reactive oxygen species(ROS)and broad-spectrum antibacterial activity under simulated solar irradiation(0.1 W·cm^(-2)).This makes it an excellent antibacterial agent for solar disinfection in water treatment.展开更多
A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature report...A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature reports,this new method had the advantages of base-free,additives-free,simple operation,mild condition,greenness,high efficiency,tolerance of a broad scope of substrates.Furth-more,the reaction could easily be scaled up in gram scale and the products also could easily transformed to other useful organic compounds.Mechanism investigation indicated that the tautomerism of pyrimidine-2-thiol to pyrimidine-2(1H)-thione and the hy-drogen bonds played important roles in the reaction.展开更多
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.展开更多
With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage techno...With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.展开更多
基金the National Key R&D Program of China(2021YFB4000300)National Natural Science Foundation of China(21822803,22408030,22072009,91534205,51072239)National Program on Key Basic Research Project(973 Program,2012CB720303).
文摘The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis,particularly elucidating hydrogen and oxygen evolution reaction(HER/OER)mechanisms while addressing the persistent activity-stability trade-off.This review summarizes their decade-long progress in developing advanced electrodes,analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations.Professor Wei proposes a unifying"12345 Principle"as an optimization framework.For HER electrocatalysts,they have identified that metal/metal oxide interfaces create synergistic"chimney effect"and"local electric field enhancement effect",enhancing selective intermediate adsorption,interfacial water enrichment/reorientation,and mass transport under industrial high-polarization conditions.Regarding OER,innovative strategies,including dual-ligand synergistic modulation,lattice oxygen suppression,and self-repairing surface construction,are demonstrated to balance oxygen species adsorption,optimize spin states,and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement.The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.
基金Projects(51704069,51734004,71403175)supported by the National Natural Science Foundation of ChinaProject(N162504011)supported by the Fundamental Research Funds for the Central Universities,China
文摘Exhaust hot water(EHW)is widely used for various industrial processes.However,the excess heat carried by EHW is typically ignored and discharged into the environment,resulting in heat loss and heat pollution.An organic Rankine cycle(ORC)is an attractive technology to recycle heat from low-temperature energy carriers.Herein,ORC was used to recycle the heat carried by EHW.To investigate the energy and exergy recovery effects of EHW,a mathematical model was developed and a parametric study was conducted.The energy efficiency and exergy efficiency of the EHW-driven ORC system were modeled with R245fa,R113 and R123 as the working fluids.The results demonstrate that the EHW and evaporation temperatures have significant effects on the energy and exergy efficiencies of the EHW-driven ORC system.Under given EHW conditions,an optimum evaporation temperature exists corresponding to the highest exergy efficiency.To further use the low-temperature EHW,a configuration retrofitted to the ORC by combining with flash evaporation(FE)was conducted.For an EHW at 120℃ and 0.2 MPa,the maximum exergy efficiency of the FE-ORC system is 45.91%at a flash pressure of 0.088 MPa.The FE-ORC performs better in exergy efficiency than the basic FE and basic EHW-driven ORC.
基金Project(2010DFA72740-06) supported by International Science & Technology Cooperation Program of China
文摘A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.
基金Supported by National 11th Five-Year Plan of Dept.of Science,China(2006BAA04B02,2006BAJ02A09)
文摘The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume even to cancel the tank,a novel structure of integrated water pipe floor heating system using shape-stabilized phase change materials(SSPCM)for thermal energy storage was developed.A numerical model was developed to analyze the performance of SSPCM floor heating system under the intermittent heating condition,which was verified by our experimental data.The thermal performance of the heating system and the effects of various factors on it were analyzed numerically.The factors including phase transition temperature,heat of fusion,thermal conductivity of SSPCM and thermal conductivity of the decoration material were analyzed.The results show that tm and kd are the most import influencing factors on the thermal performance of SSPCM floor heating system,since they determine the heat source temperature and thermal resistance between SSPCM plates and indoor air,respectively.Hm should be large to store enough thermal energy in the day time for nighttimes heating.The effects of kp can be ignored in this system.The SSPCM floor heating system has potential of making use of the daytime solar energy for heating at night efficiently in various climates when its structure is properly designed.
基金Supported by Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50502)
文摘Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in series in the system.This experiment of the energy-saving air-conditioner was carried out in the enthalpy-difference air-conditioner laboratory.The hot water temperature and the compressor's discharge and suction pressure were recorded in the working condition,where the ambient temperature was at 43 ℃,35 ℃,21 ℃,7 ℃,and 2 ℃ separately.The results showed that the system operated stably and reliably.This system can supply 240 L hot water at 50 ℃ in the whole year,and its coefficience of performance(COP)is much higher than the conventional air source heat pump system.Its energy conservation was proved by comparing the thermal efficiency with other sourece water heaters.
基金Project(2010CL04) supported by the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, ChinaProject(K-081025) supported by State Key Laboratory Breeding Base of Photocatalysis,Fuzhou University,China
文摘Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies was studied through the water splitting for O2 evolution, using a high pressure mercury lamp as the light source and Fe^3+ as the electron acceptor in two different devices: an ordinary photolysis device with catalyst powder suspending through a magnetic stirrer and a self-assembly light energy conversion device. The results show that after 12 h irradiation, the photocatalytic activity of 2.0%WO3-TiO2 with oxygen vacancies in the self-assembly light energy conversion device is higher than that of the ordinary photolysis device, and the amount of oxygen evolution is about 12 and 9 mmol/L respectively in these two devices. After 12 h, the rates of 02 evolution are slow in each device and the photocatalyst almost loses the photoactivity in the ordinary photolysis device. So, compared with the ordinary photocatalytic device, the rate of oxygen evolution and the life time of the catalyst are improved in the self-assembly light energy conversion device.
基金National Key R&D Program of China of the 13th Five-Year Plan(No.2018YFD1100704)。
文摘To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.
基金西南大学中央高校基本科研业务费项目(SWU-KT22030)重庆市教育委员会科学技术研究项目(KJQN202300205)Deutsche Forschungsgemeinschaft(DFG,German Research Foundation,457444676).
文摘Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12002156,11972185,12372136)Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(Grant No.MCMS-I-0222K01)。
文摘While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.
基金supported by National Natural Science Foundation of China(52272039,U23B2075,51972168)Key Research and Development Program in Jiangsu Province(BE2023085)Natural Science Foundation of Jiangsu Province of China(BK20231406)。
文摘Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications.
文摘Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended.
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L574)the Guizhou Provincial Science and Technology Foundation([2024]ZK General 425 and 438)+1 种基金the National Natural Science Foundation of China(22309033)the Academic Young Talent Foundation of Guizhou Normal University([2022]B05 and B06)。
文摘The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.
基金MIUR,Italian Ministry for University and Research(EX-60%/2024)。
文摘Buckypapers(BPs)consist of carbon nanotube(CNT)membranes with good mechanical,thermal and elec-trical properties.We report the modification of CNT buckypapers by the surface deposition of a thin layer of ti-tanium dioxide and their subsequent photocatalytic use for the removal of three wastewater pollutants:diclofenac(DF),carbofuran(CB)and methylene blue(MB).The results show the following decreases(RE)in the initial concentrations of these pollutants,REDF=99.5%,REMB=96%and RECB=90%after 90 min of exposure to UV-Vis radiation using~0.6 mg of photocatalyst.Experiments also showed that the degradation rate of diclofenac(k=0.1028 min^(−1))is respectively 3.5 and 6 times faster than the values for CB(k=0.0298 min^(−1))and MB(k=0.0174 min^(−1)),probably due to the easier bond cleavage in DF.UV-Vis irradiated solutions of these pollutants were then analyzed by mass spectrometry to identify the species formed during photocatalysis and suggest possible degradation paths for MB,DF,and CB.Data showed that the degradation of DF involves the formation of a photocyclization product through loss of HCl molecule,clearly consuming less energy than that needed for the opening of the central aromatic ring in MB,or the loss of the N-methyl amide functional group for CB.
基金supported in part by the National Natural Science Foundation of China(12174366)Fundamental Re-search Funds for the Central Universities(WK3450000005)the Anhui Provincial Natural Science Foundation(2108085MC93).
文摘The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)are susceptible to pH-dependent dissolution in water,which can result in the loss of photocatalysts and additional environ-mental pollution.To obtain zinc oxide-based composites with low dissolution and high antibacterial efficiency for pho-tocatalytic water disinfection,we prepared MoS_(2)/ZnO@CS composites via a precipitation method to encapsulate chitosan(CS)around MoS_(2)/ZnO.The amino groups in the CS molecules act as storerooms for hydrogen ions,which inhibits the dissolution of zinc oxide.In addition,the MoS_(2)/ZnO@CS composites exhibit high production of reactive oxygen species(ROS)and broad-spectrum antibacterial activity under simulated solar irradiation(0.1 W·cm^(-2)).This makes it an excellent antibacterial agent for solar disinfection in water treatment.
文摘A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature reports,this new method had the advantages of base-free,additives-free,simple operation,mild condition,greenness,high efficiency,tolerance of a broad scope of substrates.Furth-more,the reaction could easily be scaled up in gram scale and the products also could easily transformed to other useful organic compounds.Mechanism investigation indicated that the tautomerism of pyrimidine-2-thiol to pyrimidine-2(1H)-thione and the hy-drogen bonds played important roles in the reaction.
基金Supported by the Natural Science Foundation of China(51705326,52075339)。
文摘In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
基金supported by the Natural Science Basic Research Plan in the Shaanxi Province of China(No.2023-JC-ZD-25)Shaanxi Province(Qin ChuangYuan)“Scientist+Engineer”Team Building(No.2022KXJ-040)+1 种基金Shaanxi Provincial Department of Education Key Scientific Research Project(No.22JY024)Science and Technology Guidance Project Plan of China National Textile and Apparel Council(No.2022038,2023018).
文摘With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.