期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:10
1
作者 廖煜雷 张铭钧 +1 位作者 万磊 李晔 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期370-378,共9页
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban... The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 trajectory tracking underactuated unmanned surface vehicle (USV) BACKSTEPPING dynamic sliding mode control
在线阅读 下载PDF
Trajectory planning and tracking control for underactuated unmanned surface vessels 被引量:8
2
作者 廖煜雷 苏玉民 曹建 《Journal of Central South University》 SCIE EI CAS 2014年第2期540-549,共10页
The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for u... The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller. 展开更多
关键词 trajectory tracking STABILIZATION underactuated unmanned surface vessel BACKSTEPPING
在线阅读 下载PDF
A nonlinear bottom-following controller for underactuated autonomous underwater vehicles 被引量:6
3
作者 贾鹤鸣 张利军 +3 位作者 边信黔 严浙平 程相勤 周佳加 《Journal of Central South University》 SCIE EI CAS 2012年第5期1240-1248,共9页
The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stab... The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller. 展开更多
关键词 underactuated autonomous underwater vehicle bottom-following nonlinear iterative sliding mode
在线阅读 下载PDF
Diving control of underactuated unmanned undersea vehicle using integral-fast terminal sliding mode control 被引量:4
4
作者 严浙平 于浩淼 侯恕萍 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1085-1094,共10页
The problem of diving control for an underactuated unmanned undersea vehicle(UUV) considering the presence of parameters perturbations and wave disturbances was addressesed.The vertical motion of an UUV was divided in... The problem of diving control for an underactuated unmanned undersea vehicle(UUV) considering the presence of parameters perturbations and wave disturbances was addressesed.The vertical motion of an UUV was divided into two noninteracting subsystems for surge velocity control and diving.To stabilize the vertical motion system,the surge velocity and the depth control controllers were proposed using backstepping technology and an integral-fast terminal sliding mode control(IFTSMC).It is proven that the proposed control scheme can guarantee that all the error signals in the whole closed-loop system globally converge to the sliding surface in finite time and asymptotically converge to the origin along the sliding surface.With a unified control parameters for different motion states,a series of numerical simulation results illustrate the effectiveness of the above designed control scheme,which also shows strong robustness against parameters perturbations and wave disturbances. 展开更多
关键词 integral-fast terminal sliding mode control depth control underactuated unmanned undersea vehicle
在线阅读 下载PDF
Adaptive robust dissipative designs on straight path control for underactuated ships 被引量:3
5
作者 Li Tieshan Yang Yansheng Hong Biguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期177-181,共5页
An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm... An adaptive robust control algorithm for ship straight path control system in the presence of both modeling uncertainties and the bounded disturbances is proposed. Motivated by the backstepping approach, the algorithm is developed by using the dissipation theory, such that the resulting dosed-loop system is both strictly dissipative and asymptotically adaptively stable for all admissible uncertainties. Also, it is able to steer an underactuated ship along a prescribed straight path with ultimate bounds under external disturbances induced by wave, wind and ocean current. When there are no disturbances, the straight path control can be implemented in a locally asymptotically stable manner. Simulation results on an ocean-going training ship ‘YULONG' are presented to validate the effectiveness of the algorithm. 展开更多
关键词 underactuated ship straight path control nonlinear system adaptive backstepping design robust control.
在线阅读 下载PDF
Dynamic modelling and PFL-based trajectory tracking control for underactuated cable-driven truss-like manipulator 被引量:3
6
作者 DING Shu-chen PENG Li +2 位作者 QIAO Shang-ling LIU Rong-qiang JOSEPHAT Bundi 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3127-3146,共20页
In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the... In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the stabilization of planar underactuated manipulators without gravity is a great challenge since the system includes a second order nonholonomic constraint and most classical control methods are not suitable for this kind of system.Furthermore,the complexity of the truss-like structure results in tremendous difficulty of computational complicacy and high nonlinearity during dynamic modelling in addition to controller design.It is paramount to solve these difficulties for UCTM's future applications.To solve the above difficulties,this paper presents a dynamic modelling method for UCTM and a trajectory tracking control method based on partial feedback linearization(PFL)that fulfills the control goal of moving UCTM from its original position to a desired position by tracking a given trajectory of the joint angles.To achieve this,a model equivalent method is proposed to make UCTM equivalent with a three-link manipulator in the sense of dynamic behavior.Then the Lagrangian equation combined with complex vector method is proposed in the dynamic modelling process of UCTM,which simplifies the derivation procedure.Based on the established dynamic model,a coordinate transformation method is proposed to transform the control force matrix into the conventional form of an underactuated system,so that the control force can be separated from the unactuated term.The PFL method in combination with the LQR control method is then proposed to realize the targets that the joint angles can track given desired trajectory.Simulation experiments are conducted to verify the correctness and effectiveness of the proposed methods. 展开更多
关键词 underactuated robot trajectory tracking control partial feedback linearization non-linear control
在线阅读 下载PDF
Serret-Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:13
7
作者 廖煜雷 张铭钧 万磊 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期214-223,共10页
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa... The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 path following underactuated unmanned surface vehicle backstepping dynamic sliding mode control
在线阅读 下载PDF
Bottom-following control for an underactuated unmanned undersea vehicle using integral-terminal sliding mode control 被引量:1
8
作者 严浙平 于浩淼 李本银 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4193-4204,共12页
The bottom-following problem of an underactuated unmanned undersea vehicle(UUV) is addressed. A robust nonlinear controller is developed by using integral-terminal sliding mode control(ITSMC), which can exponentially ... The bottom-following problem of an underactuated unmanned undersea vehicle(UUV) is addressed. A robust nonlinear controller is developed by using integral-terminal sliding mode control(ITSMC), which can exponentially drive an UUV onto a predefined path at a constant forward speed. The kinematic error equations are first derived in the Serret-Frenet frame. Using the line of sight(LOS) method, Lyapunov's direct technique and tracking differentiator, the guidance law is established. Then, the kinematic controller, the guidance law, is expanded to cope with vehicle dynamics by resorting to introduce two integral-terminal sliding surfaces. Robustness to parameter perturbation is addressed by incorporating the reaching laws associated with the upper bound of the parameter perturbation. The proposed control law can guarantee that all error signals globally exponentially converge to the origin. Finally, a series of numerical simulation results are presented and discussed. In these simulations, wave, constant unknown ocean currents(for the purposes of the controller) and the parameter perturbation are added to illustrate the robustness and effectiveness of the bottom-following control scheme. 展开更多
关键词 underactuated unmanned undersea VEHICLE integral-t
在线阅读 下载PDF
Sliding-mode control of path following for underactuated ships based on high gain observer 被引量:1
9
作者 秦梓荷 林壮 +1 位作者 孙寒冰 杨东梅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3356-3364,共9页
A nonlinear robust control strategy is proposed to force an underactuated surface ship to follow a predefined path with uncertain environmental disturbance and parameters.In the controller design,a high-gain observer ... A nonlinear robust control strategy is proposed to force an underactuated surface ship to follow a predefined path with uncertain environmental disturbance and parameters.In the controller design,a high-gain observer is used to estimate velocities,thus only position and yaw angle measurements are required.The control problem of underactuated system is transformed into a control of fully actuated system through adopting an improved line-of-sight(LOS) guidance law.A sliding-mode controller is designed to eliminate the yaw angle error,and provide the control system robustness.The control law is proved semi-globally exponentially stable(SGES) by applying Lyapunov stability theory,and numerical simulation using real data of a monohull ship illustrates the effectiveness and robustness of the proposed methodology. 展开更多
关键词 underactuated ship path following sliding-mode control line-of-sight guidance high gain observer
在线阅读 下载PDF
Robust stabilization and disturbance attenuation for a class of underactuated mechanical systems 被引量:1
10
作者 赖旭芝 潘昌忠 +2 位作者 吴敏 佘锦华 Simon X.YANG 《Journal of Central South University》 SCIE EI CAS 2012年第9期2488-2495,共8页
The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unsta... The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously. 展开更多
关键词 underactuated mechanical systems robust stabilization disturbance attenuation H∞ linear matrix inequality (LMI)
在线阅读 下载PDF
MOTION CONTROL OF A CLASS OF UNDERACTUATED MECHANICAL SYSTEMS: THE ACROBOT EXAMPLE
11
作者 Lai Xuzhi Cai Zixing (College of Information Engineering, Central South University of Technology, Changsha 410083, China) She Jinhua (Mechatronics Department, Tokyo University of Engineering,Tokyo, 192 8580, Japan) 《Journal of Central South University》 SCIE EI CAS 1999年第2期134-137,共4页
Presents a control strategy for underactuated mechanical system: the acrobot example, which combines fuzzy control and linear quadratic control. The fuzzy controller designed for the upswing ensures that the energy of... Presents a control strategy for underactuated mechanical system: the acrobot example, which combines fuzzy control and linear quadratic control. The fuzzy controller designed for the upswing ensures that the energy of the acrobot increases with each swing. After the acrobot enters a neighborhood of the unstable straight up equilibrium position, a linear quadratic regulator is designed to balance it. 展开更多
关键词 ACROBOT underactuated mechanical systems fuzzy control linear QUADRATIC REGULATOR
在线阅读 下载PDF
基于改进粒子群算法的 USV 航向分数阶控制 被引量:21
12
作者 李光宇 郭晨 李延新 《系统工程与电子技术》 EI CSCD 北大核心 2014年第6期1146-1151,共6页
针对欠驱动水面船舶(underactuated surface vessel,USV)航向保持稳定性问题,对船舶自动舵控制系统设计了分数阶PIλDμ控制器。积分阶次λ和微分阶次μ的引入使得分数阶比例-积分-微分(proportion integration differentiation,PID)PI... 针对欠驱动水面船舶(underactuated surface vessel,USV)航向保持稳定性问题,对船舶自动舵控制系统设计了分数阶PIλDμ控制器。积分阶次λ和微分阶次μ的引入使得分数阶比例-积分-微分(proportion integration differentiation,PID)PIλDμ控制器具有更好的鲁棒性和抗扰动能力,但同时也加大了算法设计的难度。使用改进粒子群算法对分数阶PIλDμ控制器参数进行整定,即解决了粒子群算法容易使粒子陷入局部最优问题,又解决了分数阶PIλDμ控制器整定参数多、设计复杂问题。通过仿真对比实验,结果表明,该控制器能很好地根据船舶动态特性变化,自动进行适应性参数优化,具有跟踪速度快、航向控制超调小以及抗扰性强等优点。 展开更多
关键词 欠驱动水面船舶 改进粒子群算法 分数阶 PIλDμ 控制器 航向控制 自动舵 underactuated surface VESSEL (USV)
在线阅读 下载PDF
Intelligent PID guidance control for AUV path tracking 被引量:12
13
作者 李晔 姜言清 +2 位作者 王磊峰 曹建 张国成 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3440-3449,共10页
Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as pl... Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as planning level during the control system using transverse deviation is came up with. Continuous tracking of path expressed by a point sequence can be realized by the law. Firstly, a path tracking control system based on rational behavior model of three layers is designed, mainly satisfying the needs of underactuated AUV. Since there is no need to perform spatially coupled maneuvers, the 3D path tracking control is decoupled into planar 2D path tracking and depth or height tracking separately. Secondly, planar path tracking controller is introduced. For the reason that more attention is paid to comparing with vertical position control, transverse deviation in analytical form is derived. According to the Lyapunov direct theory, control law is designed using discrete PID algorithm whose parameters obey adaptive fuzzy adjustment. Reference heading angle is given as an output of the guidance controller conducted by lateral deviation together with its derivative. For the purpose of improving control quality and facilitating parameter modifying, data normalize modules based on Sigmoid function are applied to input-output data manipulation. Lastly, a sequence of experiments was carried out successfully, including tests in Longfeng lake and at the Yellow sea. In most challenging sea conditions, tracking errors of straight line are below 2 m in general. The results show that AUV is able to compensate the disturbance brought by sea current. The provided test results demonstrate that the designed guidance controller guarantees stably and accurately straight route tracking. Besides, the proposed control system is accessible for continuous comb-shaped path tracking in region searching. 展开更多
关键词 guidance control region search underactuated AUV intelligent PID path tracking
在线阅读 下载PDF
A new robust fuzzy method for unmanned flying vehicle control 被引量:5
14
作者 Mojtaba Mirzaei Mohammad Eghtesad Mohammad Mahdi Alishahi 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2166-2182,共17页
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T... A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance. 展开更多
关键词 adaptive fuzzy sliding-mode control unmanned flying vehicle control underactuated system Lyapunov stability high speed underwater vehicle
在线阅读 下载PDF
HIT prosthetic hand based on tendon-driven mechanism 被引量:4
15
作者 刘伊威 丰飞 高一夫 《Journal of Central South University》 SCIE EI CAS 2014年第5期1778-1791,共14页
An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasi... An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasible.Based on the design of finger,a prosthetic hand is designed.The hand is composed of 5 independent fingers and it looks more like humanoid.Its size is about 85% of an adult's hand and weights about 350 g.Except the thumb finger,each finger is actuated by one DC motor,gear head and a tendon,and has three curling/extension joints.The thumb finger which is different from other existing prostheses is a novel design scheme.The thumb finger has four joints including three curling/extension joints and a joint which is used to realize the motion of the thumb related to the palm,and these joints are also driven by one DC motor,harmonic drive and a tendon.The underactuation and adaptive curling/extension motion of the finger are realized by joint torsion springs.A high-powered chip of digital signal processing(DSP)is the main part of the electrical system which is used for the motors control,data collection,communication with external controlling source,and so on.To improve the reliability of the hand,structures and sensors are designed and made as simply as possible.The hand has strong manipulation capabilities that have been verified by finger motion and grasping tests and it can satisfy the daily operational needs and psychological needs of deformities. 展开更多
关键词 prosthetic hand tendon-driven mechanism underactuation kinematics and static analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部