期刊文献+

基于改进粒子群算法的 USV 航向分数阶控制 被引量:21

Fractional-order control of USV course based on improved PSO algorithm
在线阅读 下载PDF
导出
摘要 针对欠驱动水面船舶(underactuated surface vessel,USV)航向保持稳定性问题,对船舶自动舵控制系统设计了分数阶PIλDμ控制器。积分阶次λ和微分阶次μ的引入使得分数阶比例-积分-微分(proportion integration differentiation,PID)PIλDμ控制器具有更好的鲁棒性和抗扰动能力,但同时也加大了算法设计的难度。使用改进粒子群算法对分数阶PIλDμ控制器参数进行整定,即解决了粒子群算法容易使粒子陷入局部最优问题,又解决了分数阶PIλDμ控制器整定参数多、设计复杂问题。通过仿真对比实验,结果表明,该控制器能很好地根据船舶动态特性变化,自动进行适应性参数优化,具有跟踪速度快、航向控制超调小以及抗扰性强等优点。 To improve the course stability of underactuated surface vessel (USV),a fractional-order PIλD μ(proportion integration differentiation,PID)controller is applied to ship autopilot,which is more flexible,robust and has stronger disturbance rejection ability with the integral-orderλ and differential-orderμ.However, difficulties for optimization also increase.A new method of designing PIλD μ controller based on the improved particle swarm optimization (IPSO)algorithm is proposed,which solves the problems of the particles falling into local optimum and the design complexity in fractional-order PIλD μ controller design.The fractional-order PIλD μ controller based on IPSO is compared with the traditional PSO-PID controller under the same conditions. The simulation results show that,the controller can optimize the adaptive parameters well and automatically, and has a high tracking speed,small overshoot and strong immunity.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第6期1146-1151,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60474014,60774046,61074053,61374114)资助课题
关键词 欠驱动水面船舶 改进粒子群算法 分数阶 PIλDμ 控制器 航向控制 自动舵 UNDERACTUATED surface VESSEL (USV) improved particle swarm optimization (IPSO)algorithm fractional-order PIλD μ controller course control automatic rudder
作者简介 李光宇(1979-),男,讲师,博士研究生,主要研究方向为分数阶控制系统、滑模控制、神经网络、粒子群算法。E—mail:ligyu@163.com 郭晨(1956-),男,教授,博士,主要研究方向为船舶自动控制系统、智能控制理论与应用、虚拟现实技术及应用等领域。E-mail:guoc@dlmu.edu.cn 李延新(1979-),女,讲师,硕士,主要研究方向为智能控制。E-mail:lyx7977@163.com
  • 相关文献

参考文献15

二级参考文献52

  • 1袁小芳,王耀南,杨辉前.基于支持向量机的非线性逆控制及仿真研究[J].湖南大学学报(自然科学版),2006,33(1):71-74. 被引量:8
  • 2张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. 被引量:112
  • 3曹军义,曹秉刚.分数阶控制器的数字实现及其特性[J].控制理论与应用,2006,23(5):791-794. 被引量:33
  • 4Dimeo R, Lee K Y. Boiler-turbine control system design using a genetic algorithm[J]. IEEE Transactions on Energy Conversion, 1995, 10(4): 752-759.
  • 5Cheung K P, Wang L X. Comparison of fuzzy and PI controllers for a benchmark drum-boiler model[J]. Proceedings IEEE International Conference Control Application, 1998, 2(1-4): 958-962.
  • 6Peng Daogang, Zhang Hao, Yang Ping. The boiler-turbine coordinated control system based on immune feedback mechanism[J]. Proceedings of Sixth International Conference Machine Learning Cybernetics, 2007, 1(19-22): 449-453.
  • 7Toodeshki M H, Askari J. Model-reference adaptive control for a nonlinear boiler-turbine system[J]. IEEE International Conference IndustrialTechnology, 2008(21-24): 1-6.
  • 8Fang F, Liu J Z, Tan W. Output tracking control of a nonlinear boiler- turbine unit[C]. 43rd IEEE Conference Decision and Control, Bahamas, 2004: 2615-2620.
  • 9Valerio D, Sada Costa J. Tuning of fractional PID controllers with Ziegler-Nichols type rules[J]. Signal Processing, 2006, 86(10): 2771-2784.
  • 10Pommier-Budinger V, Janat Y, Nelson-Gruel D, et al. CRONE control of a multivariable lightly damped plant[C]. The 14th IEEE Mediterranean Electro-technical Conference, Ajaccio, 2008.

共引文献74

同被引文献197

引证文献21

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部