A novel twin-rotor piston engine (TRPE) mechanism with high volumetric output and power density was introduced. This new engine comprises an energy conversion system and a differential velocity drive mechanism (DVD...A novel twin-rotor piston engine (TRPE) mechanism with high volumetric output and power density was introduced. This new engine comprises an energy conversion system and a differential velocity drive mechanism (DVDM). Two special geared four-bar mechanisms, DVDM-1 and DVDM-2, were utilized and compared. Based on the closed loop vector method, a mathematical model for position, velocity, and acceleration of the two mechanisms was established. Numerical examples illustrate that the kinematic characteristics were presented. Expression of the displacement and compression ratio of the two engine mechanisms were derived and compared. It is concluded that both DVDM-1 and DVDM-2 adopted in the proposed TRPE with six vane pistons create thirty-six power strokes per revolution of the output shaft, and the summation of two angles covered by each rocker is always 2x/N as the output shaft rotates an angle of x/N. In DVDM-1, the span angle of a vane piston should be designed to be 10.2°, and the compression ratio should be equal to 10; in DVDM-2, the span angle of a vane piston should be designed to be 10.6°, and the compression ratio should be equal to 4.3.展开更多
The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon ...The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE.展开更多
A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically e...A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically enlarge the engine displacement as a result of the special driving mechanism,which was named dynamic volume expansion.The mathematical model of ATPE comprising a dynamic model and a thermodynamic model was established under the assumption of no mechanical friction.The model was numerically simulated in Matlab.The results show that shortage of low output torque confusing traditional air-powered engines can be overcome.The average output torque sharply increases to 100 N·m,which is about three times that of traditional air-powered engines with equal cylinder displacement under the pressure of 0.6 MPa at 480 r/min.ATPE can be used to drive vehicles directly without transmission box,therefore the energy transfer efficiency of ATPE can be increased.Furthermore,benefitting from the novel gas distribution system,the engine shows an ability in self-adjusting under different loads.The arrangements of air ports automatically adjust the open interval of air ports according to the load,which may simplify the speed control system.展开更多
As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was...As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.展开更多
The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio o...The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.展开更多
In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characte...In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characteristics of the working processes in the TRPE, corresponding differential equations were established and then simplified by period features of the TRPE. Finally, the major boundary conditions were figured out. The changing trends of mass, pressure and temperature of working fuel in the working chamber during a complete engine cycle were presented. The simulation results are consistent with the trends of an actual working cycle in the TRPE, which indicates that the method of simulation is feasible. As the pressure in the working chamber is calculated, all the performance parameters of the TRPE can be obtained. The major performance indicators, such as the indicated mean effective pressure, power to weight ratio and the volume power, are also acquired. Compared with three different types of conventional engines, the TRPE has a bigger utilization ratio of cylinder volume, a higher power to weight ratio and a more compact structure. This indicates that TRPE is superior to conventional engines.展开更多
The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power densi...The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power density engines and can produce 36 power strokes per shaft revolution. Compared with the conventional engines, the vector sum of combustion gas forces acting on each rotor piston in TRPE is a pure torque, and the combustion gas rotates the rotors while compresses the gas in the compression chamber at the same time. Mathematical modeling of gas force transmission was built. Expression for gas torque on each rotor was derived. Different variation patterns of the volume change of working chamber were introduced. The analytical and numerical results is presented to demonstrate the main characteristics of gas torque. The results show that the value of gas torque in TRPE falls to be less than zero before the combustion phase is finished; the time for one stroke is 30° in terms of the rotating angle of the output shaft; gas torque in one complete revolution of the output shaft has a period which is equal to 60° and it is necessary to put off the moment when gas torque becomes zero in order to export the maximum energy.展开更多
In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature a...In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature and stress under actual operation conditions are very difficult. A multi-channel measurement-storage technology is used in the engine bench experiment to measure the piston temperature and stress in real time. The temperature and stress changes in the engine operation process are obtained. They provide reliable instructive criteria for numerical analysis and experiment of the piston working state.展开更多
基金Project(7131109) supported the by National Defense Pre-research Foundation of ChinaProject(50975278) supported by National the Natural Science Foundation of China
文摘A novel twin-rotor piston engine (TRPE) mechanism with high volumetric output and power density was introduced. This new engine comprises an energy conversion system and a differential velocity drive mechanism (DVDM). Two special geared four-bar mechanisms, DVDM-1 and DVDM-2, were utilized and compared. Based on the closed loop vector method, a mathematical model for position, velocity, and acceleration of the two mechanisms was established. Numerical examples illustrate that the kinematic characteristics were presented. Expression of the displacement and compression ratio of the two engine mechanisms were derived and compared. It is concluded that both DVDM-1 and DVDM-2 adopted in the proposed TRPE with six vane pistons create thirty-six power strokes per revolution of the output shaft, and the summation of two angles covered by each rocker is always 2x/N as the output shaft rotates an angle of x/N. In DVDM-1, the span angle of a vane piston should be designed to be 10.2°, and the compression ratio should be equal to 10; in DVDM-2, the span angle of a vane piston should be designed to be 10.6°, and the compression ratio should be equal to 4.3.
基金Project(51275451)supported by the National Natural Science Foundation of ChinaProject(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China+1 种基金Project(2013CB035400)supported by the National Basic Research Program of ChinaProject(2011BAK03B09)supported by the National Key Technology R&D Program of China
文摘The structure and working principle of a two-cylinder four-stroke single-piston hydraulic free piston engine(HFPE) were introduced. The basic vibration equation of free piston assembly(FPA) was established based upon the energy conversion between the injected fuel and the friction together with the load. Both the theoretical and numerical results show that the vibration system of FPA is a nonlinear conservative autonomous system in one cycle. The FPA vibration is symmetric with constant amplitude when FPA is only driven by the compression pressure in the compression accumulator and that in the combustion chamber. When considering the friction and load, FPA could still achieve a stable vibration after a few cycles' adjustment whether the input energy is equal to the consumed energy or not. The vibration characteristics are different when FPA vibrates in the compression stroke and the expansion stroke, which is the unique feature of the single-piston HFPE.
基金Projects(51105365,51475464)supported by the National Natural Science Foundation of China
文摘A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically enlarge the engine displacement as a result of the special driving mechanism,which was named dynamic volume expansion.The mathematical model of ATPE comprising a dynamic model and a thermodynamic model was established under the assumption of no mechanical friction.The model was numerically simulated in Matlab.The results show that shortage of low output torque confusing traditional air-powered engines can be overcome.The average output torque sharply increases to 100 N·m,which is about three times that of traditional air-powered engines with equal cylinder displacement under the pressure of 0.6 MPa at 480 r/min.ATPE can be used to drive vehicles directly without transmission box,therefore the energy transfer efficiency of ATPE can be increased.Furthermore,benefitting from the novel gas distribution system,the engine shows an ability in self-adjusting under different loads.The arrangements of air ports automatically adjust the open interval of air ports according to the load,which may simplify the speed control system.
基金Projects(51475464,51175500) supported by the National Natural Science Foundation of China
文摘As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.
基金Projects(51675043,52005038)supported by the National Natural Science Foundation of China。
文摘The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.
基金Project(7131109)supported by the National Defense Pre-research Foundation of ChinaProject(51175500)supported by the National Natural Science Foundation of China
文摘In order to study the major performance indicators of the twin-rotor piston engine(TRPE), Matlab/simulink was used to simulate the mathematical models of its thermodynamic processes. With consideration of the characteristics of the working processes in the TRPE, corresponding differential equations were established and then simplified by period features of the TRPE. Finally, the major boundary conditions were figured out. The changing trends of mass, pressure and temperature of working fuel in the working chamber during a complete engine cycle were presented. The simulation results are consistent with the trends of an actual working cycle in the TRPE, which indicates that the method of simulation is feasible. As the pressure in the working chamber is calculated, all the performance parameters of the TRPE can be obtained. The major performance indicators, such as the indicated mean effective pressure, power to weight ratio and the volume power, are also acquired. Compared with three different types of conventional engines, the TRPE has a bigger utilization ratio of cylinder volume, a higher power to weight ratio and a more compact structure. This indicates that TRPE is superior to conventional engines.
基金Project(51175500)supported by the National Natural Science Foundation of China
文摘The gas torque in a twin-rotor piston engine(TRPE) was modeled using adiabatic approximation with instantaneous combustion. The first prototype of TRPE was manufactured. This prototype is intended for high power density engines and can produce 36 power strokes per shaft revolution. Compared with the conventional engines, the vector sum of combustion gas forces acting on each rotor piston in TRPE is a pure torque, and the combustion gas rotates the rotors while compresses the gas in the compression chamber at the same time. Mathematical modeling of gas force transmission was built. Expression for gas torque on each rotor was derived. Different variation patterns of the volume change of working chamber were introduced. The analytical and numerical results is presented to demonstrate the main characteristics of gas torque. The results show that the value of gas torque in TRPE falls to be less than zero before the combustion phase is finished; the time for one stroke is 30° in terms of the rotating angle of the output shaft; gas torque in one complete revolution of the output shaft has a period which is equal to 60° and it is necessary to put off the moment when gas torque becomes zero in order to export the maximum energy.
文摘In both numerical simulation and experimental research for the piston of internal combustion engine, the verification foundations are always insufficient. The reason is the measurements for its transient temperature and stress under actual operation conditions are very difficult. A multi-channel measurement-storage technology is used in the engine bench experiment to measure the piston temperature and stress in real time. The temperature and stress changes in the engine operation process are obtained. They provide reliable instructive criteria for numerical analysis and experiment of the piston working state.