期刊文献+
共找到579篇文章
< 1 2 29 >
每页显示 20 50 100
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:7
1
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
在线阅读 下载PDF
Features of energy distribution for blast vibration signals based on wavelet packet decomposition 被引量:5
2
作者 LING Tong-hua LI Xi-bing DAI Ta-gen PENG Zhen-bin 《Journal of Central South University of Technology》 2005年第z1期135-140,共6页
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non... Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria. 展开更多
关键词 BLASTING vibration NON-STATIONARY RANDOM signal energy distribution wavelet TRANSFORM wavelet packet decomposition
在线阅读 下载PDF
基于WPD-ISSA-CA-CNN模型的电厂碳排放预测
3
作者 池小波 续泽晋 +1 位作者 贾新春 张伟杰 《控制工程》 北大核心 2025年第8期1387-1394,共8页
碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利... 碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利用小波包分解(wavelet packet decomposition,WPD)算法将信号按频率特性分解为子序列,再将全部分量增广(component augmentation,CA)作为模型输入,以减少模型的训练时间。其次,考虑到该模型超参数选择困难,利用多策略融合的改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对卷积神经网络(convolutional neural networks,CNNs)的超参数进行寻优。以山西某发电厂2×25 MW锅炉的历史数据为样本,利用5种评价指标将所提模型与BP、LSTM、CNN及其混合模型进行对比。结果表明,所提混合模型在预测火力发电碳排放中各指标均有最佳的准确度且模型训练速度明显提升。 展开更多
关键词 碳排放预测 小波包分解 改进麻雀搜索算法 卷积神经网络
在线阅读 下载PDF
基于敏感因素选择与残差网络的表面粗糙度预测
4
作者 史丽晨 邵献忠 +1 位作者 王海涛 豆卫涛 《计算机集成制造系统》 北大核心 2025年第2期512-523,共12页
为了对切削加工件的表面粗糙度进行预测,避免原材料浪费,提出一种基于敏感因素选择与残差网络(ResNet)的表面粗糙度预测方法。该方法首先分析切削系统中不同采样通道的振动信号与表面粗糙度之间的相关性确定敏感信号,然后利用小波包分... 为了对切削加工件的表面粗糙度进行预测,避免原材料浪费,提出一种基于敏感因素选择与残差网络(ResNet)的表面粗糙度预测方法。该方法首先分析切削系统中不同采样通道的振动信号与表面粗糙度之间的相关性确定敏感信号,然后利用小波包分解将敏感信号分解为不同频段的小波包系数并经过相关性分析选择敏感频段,最后融合各敏感频段的小波包系数构成系数矩阵作为ResNet的输入参数。结果表明,基于敏感因素选择与ResNet的预测方法的相对百分比误差不超过5.8%,均方根误差为0.0159,平均绝对误差为0.0133,决定系数为0.9148。通过与多层前馈网络、支持向量机、卷积神经网络对比证明,所提方法的预测精度具有优越性。 展开更多
关键词 残差网络 小波包分解 相关性分析 敏感频段 表面粗糙度 预测
在线阅读 下载PDF
基于小波包分解重构的变工况行星齿轮箱故障诊断
5
作者 史丽晨 周星宇 杨超 《制造技术与机床》 北大核心 2025年第7期50-57,共8页
针对在变工况环境下齿轮箱故障振动数据复杂程度高和故障特征难以提取的问题,提出一种基于小波包分解的三通道数据融合和多尺度残差网络的变工况齿轮箱故障诊断方法。该方法利用小波包分解重构将齿轮箱三通道振动信号进行融合,并利用格... 针对在变工况环境下齿轮箱故障振动数据复杂程度高和故障特征难以提取的问题,提出一种基于小波包分解的三通道数据融合和多尺度残差网络的变工况齿轮箱故障诊断方法。该方法利用小波包分解重构将齿轮箱三通道振动信号进行融合,并利用格拉姆角和图像编码方法转化为二维图像;使用多尺度卷积结构与残差结构相结合的网络结构对变工况齿轮箱故障进行诊断;引入高效通道注意力机制,增强不同尺度卷积下提取到不同特征的敏感性,从而提高模型的表征能力和分类性能。实验结果表明,所提方法在定转速、变负载故障数据下诊断准确率可达到99.59%,定负载、变转速故障数据下诊断准确率可达到98.58%,证明该方法可以有效地弱化运行中变转速和变负载对故障特征的影响。 展开更多
关键词 小波包分解 多尺度卷积 变工况 故障诊断 齿轮箱
在线阅读 下载PDF
不同速率下松散颗粒直剪试验声发射特征
6
作者 吴鑫 罗筱毓 +3 位作者 李龙灿 刘永红 朱旭 林华李 《西南交通大学学报》 北大核心 2025年第1期128-136,共9页
松散颗粒堆积体在自然界和工业生产活动中广泛存在.为研究其力学性质和失稳过程,基于声发射(acoustic emission,AE)技术探究松散体剪切过程的声学特征演化规律.首先,分析松散颗粒在不同剪切速率下的AE特征参数;其次,结合加载过程的力学... 松散颗粒堆积体在自然界和工业生产活动中广泛存在.为研究其力学性质和失稳过程,基于声发射(acoustic emission,AE)技术探究松散体剪切过程的声学特征演化规律.首先,分析松散颗粒在不同剪切速率下的AE特征参数;其次,结合加载过程的力学特征对AE演化阶段进行划分;最后,利用频谱变化和小波包能量占比进一步验证松散颗粒剪切破坏的AE演化规律.结果表明:能量和振铃计数随剪切过程而逐步增大,且剪切速率越快,能量和振铃计数增幅越大;小事件数与大事件数的比值(b值)在剪切过程中逐渐降低,剪切速率越大,b值越小;不同速率下的颗粒抗剪强度约为140kPa,剪切力峰值集中在400N左右,振铃计数、AE能量与b值在剪切运动过程中的变化与剪切破坏阶段密切相关;频谱重心会随剪切过程逐步降低,从大约350 kHz降低至250kHz,同时,较低频带能量占比增加、较高频带能量占比减少,导致频谱重心不断下移. 展开更多
关键词 松散颗粒 剪切速率 声发射 频谱分析 小波包分解
在线阅读 下载PDF
基于WP-TRP的滚动轴承故障诊断方法
7
作者 王娜 崔月磊 +1 位作者 罗亮 王子从 《东北大学学报(自然科学版)》 北大核心 2025年第3期20-27,共8页
针对故障诊断中传统时频域法提取特征时易受主观因素影响而导致冗余,且深度学习算法受训练数据影响导致计算复杂性较高的缺点,将时域和频域结合,提出一种基于小波包-无阈值递归图(WPTRP)的滚动轴承故障诊断方法.首先,提出递减信息熵准则... 针对故障诊断中传统时频域法提取特征时易受主观因素影响而导致冗余,且深度学习算法受训练数据影响导致计算复杂性较高的缺点,将时域和频域结合,提出一种基于小波包-无阈值递归图(WPTRP)的滚动轴承故障诊断方法.首先,提出递减信息熵准则,以克服小波包分解的主观性,获取更准确的时频域特征;在此基础上,引入无阈值递归图思想,充分提取数据初始时域特征,并利用奇异值分解进一步降低冗余特征,提高计算效率.然后,引入海洋捕食者算法来获得支持向量机最优参数,实现故障诊断的准确分类.最后,通过标准滚动轴承数据集仿真验证了所提方法的有效性. 展开更多
关键词 故障诊断 小波包分解 信息熵 无阈值递归图 奇异值分解 海洋捕食者算法
在线阅读 下载PDF
基于三维荧光光谱预测大豆油掺假花生油含量的建模效果研究
8
作者 魏泉增 刘雪影 +1 位作者 王至洁 丁芳 《光谱学与光谱分析》 北大核心 2025年第7期1906-1915,共10页
为实现大豆油掺假花生油含量测定,采集自制不同含量大豆油和花生油伪品的三维荧光光谱数据,采用三角形内插值法去除瑞利散射和拉曼散射,而后对荧光光谱进行卷积平滑(Savitzky-Golar)处理。采用三线性交替分解(ATLD)和平行因子(PARAFAC)... 为实现大豆油掺假花生油含量测定,采集自制不同含量大豆油和花生油伪品的三维荧光光谱数据,采用三角形内插值法去除瑞利散射和拉曼散射,而后对荧光光谱进行卷积平滑(Savitzky-Golar)处理。采用三线性交替分解(ATLD)和平行因子(PARAFAC)算法预测花生油的含量。同时,对不同含量花生油的伪品的三维荧光数据去散射和平滑处理后,对每个激发波长所对应的发射光谱进行小波包分解(WPD),以最低频段的波包系数,作为荧光发射光谱数据表征量。并按照激发波长顺序数将所有发射波长数据重构为一阶荧光光谱数据向量,构建偏最小二乘(PLS)和人工神经网络(ANN)数据模型预测伪品中花生油含量。结果表明,PARAFAC,ATLD,WPD-PLS和WPD-ANN的回归系数R^(2)分别为0.898,0.941,0.961和0.981。WPD-ANN算法模型的训练集、验证集、测试集和全部数据的平均绝对偏差(MAD)、均方误差(MSE)和均方根误差(RMSE)均较小,WPD-ANN模型对伪品中的花生油含量进行预测,预测偏差在±5%以内的样本百分比为82.5%。对比分析WPD-ANN,WPD-PLS,ATLD和PARAFAC 4种算法模型的花生油含量预测结果。WPD-ANN和WPD-PLS模型偏差的均值和中位数都在0%附近,而ATLD和PARAFAC模型偏差的均值和中位数离0%较远。相较于PARAFAC模型,ATLD模型的收敛速度更快,偏差更小。ATLD和PARAFAC模型可能受到非线性因素的影响,预测效果不及WPD-ANN及WPD-PLS,而ANN和PLS是基于WPD及数据重构后一阶数据回归建模,同时ANN是非线性模型,WPD-ANN模型对伪花生油中花生油含量具有更强的预测能力且偏差更小,是预测伪品中花生油含量4种算法中更优的算法。这为定量分析掺假食用油提供了研究基础。 展开更多
关键词 食用油掺假 小波包分解 人工神经网络 偏最小二乘 三线性交替分解 平行因子
在线阅读 下载PDF
基于音频信号的气固两相流检测方法研究
9
作者 仝卫国 门国悦 +1 位作者 蔡天娇 崔建昕 《计量学报》 北大核心 2025年第3期383-390,共8页
利用气固两相流在管道流动中产生的音频信号包含大量流体信息的特点,将音频信号引入气固两相流检测。提出一种基于音频信号的气固两相流分类的检测方法:对音频信号利用小波包分析进行多尺度分析,其去噪效果优于集合经验模态分解重构方... 利用气固两相流在管道流动中产生的音频信号包含大量流体信息的特点,将音频信号引入气固两相流检测。提出一种基于音频信号的气固两相流分类的检测方法:对音频信号利用小波包分析进行多尺度分析,其去噪效果优于集合经验模态分解重构方法。在重构后的音频信号中选取梅尔频率倒谱系数(MFCCs)作为特征,输入到长短期记忆(LSTM)递归神经网络中。实验结果表明,在气固两相流的弯管处上升段所收集到的音频信号的幅值更大,适合安装采样设备。检测方法对实验中6种流动状态的气固两相流分类效果好,准确率为96.11%,证明了音频信号在气固两相流检测中的可行性。 展开更多
关键词 流量计量 气固两相流 小波包分解 音频信号 梅尔倒谱系数 长短期记忆递归神经网络
在线阅读 下载PDF
基于改进北方苍鹰算法优化SVM的轴承故障诊断研究
10
作者 吴晓君 李渠伟 《机械强度》 北大核心 2025年第5期80-89,共10页
针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自... 针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization,NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization,PSO)算法、麻雀搜索算法(Sparrow Search Algorithm,SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 改进北方苍鹰优化算法 柯西变异策略 小波包分解 支持向量机
在线阅读 下载PDF
基于小波包分解卷积神经网络的停运输电线路故障识别方法 被引量:1
11
作者 王鑫明 王祥宇 +3 位作者 贾晓卜 张飞飞 李少博 胡永强 《电测与仪表》 北大核心 2025年第1期61-67,共7页
当输电线路处于热备用状态时,停运线路上仍可能发生短路故障,准确地判断停运线路的故障状态能有效地避免合闸到故障线路时对电力系统造成冲击并对故障的排除提供便利,因此有必要对停运输电线路进行故障识别。对于双回输电线路提出一种... 当输电线路处于热备用状态时,停运线路上仍可能发生短路故障,准确地判断停运线路的故障状态能有效地避免合闸到故障线路时对电力系统造成冲击并对故障的排除提供便利,因此有必要对停运输电线路进行故障识别。对于双回输电线路提出一种采用小波包分解生成的频谱图作为卷积神经网络(convolutional neural network,CNN)输入进行特征提取的停运线路故障识别方法。为减少人为提取特征产生的误差,首先对停运输电线路故障时三相电压暂态波形进行测量,采用小波包分解得到三相电压波形时频特性,最终通过CNN提取特征并进行故障分类。为验证该方法的故障识别效果,以河北省3条线路的实际数据为基础,在ATP-EMTP中建立500 kV同塔双回输电线路模型,为模拟现场各因素产生的误差在测得电压波形中加入10 dB高斯白噪声。结果表明,对热备用线路上故障状态识别准确率为99.98%,在一定程度上为停运线路的故障诊断及排除提供了参考。 展开更多
关键词 同塔双回输电线路 感应电压 小波包分解 时频分析 卷积神经网络 故障识别
在线阅读 下载PDF
基于SSA-GPR和WPD的电池剩余寿命预测
12
作者 傅鑫 王靖岳 +1 位作者 朱楠 丁建明 《科学技术与工程》 北大核心 2025年第23期10023-10030,共8页
快速准确地获取锂离子电池的剩余使用寿命,对提高设备的可靠性有着重要意义。针对传统高斯过程回归(gaussian process regression,GPR)超参数寻优效果差,寻优困难,利用麻雀搜索算法(sparrow search algorithm,SSA)对高斯过程回归进行超... 快速准确地获取锂离子电池的剩余使用寿命,对提高设备的可靠性有着重要意义。针对传统高斯过程回归(gaussian process regression,GPR)超参数寻优效果差,寻优困难,利用麻雀搜索算法(sparrow search algorithm,SSA)对高斯过程回归进行超参数优化,同时利用小波包分解(wavelet packet decomposition,WPD)降低数据集复杂度,提取相关信息,增加预测精度,提出了将小波包分解和高斯过程回归以及麻雀搜索算法相结合,建立剩余使用寿命(remaining useful life,RUL)预测模型。首先,等压降放电时间曲线作为间接健康因子,电池容量作为直接健康因子,利用Pearson系数验证二者的相关性。其次,利用小波包分解对直接健康因子与间接健康因子进行分解,提取出高频信号和低频信号并将这些信号分为训练集与测试集。然后,建立高斯过程回归模型,利用SSA对该模型进行超参数优化,分别对不同信号进行预测、叠加,实现剩余使用寿命的准确预测。最后,利用公开数据集进行验证。结果表明,本文提出的模型平均绝对误差不超过0.0065、平均绝对百分比误差不超过0.0052,均方根误差不超过0.0078,拥有良好的预测精度和泛化性。 展开更多
关键词 剩余使用寿命 麻雀搜索算法 高斯过程回归 小波包分解
在线阅读 下载PDF
考虑风电不确定性的海上风电场混合储能容量优化 被引量:4
13
作者 陆秋瑜 杨银国 +4 位作者 陈俊生 刘洋 刘念 曹飞 刘伟召 《南方电网技术》 北大核心 2025年第2期115-123,134,共10页
为减少海上风电的间歇性和波动性对电网的冲击,常引入储能装置平抑其输出功率波动。为响应低碳发展进程并考虑到风电的不确定性使得基于某一典型风电出力场景的储能容量配置方法具有局限性,综合考虑海上风电场的售电收益、碳交易收益及... 为减少海上风电的间歇性和波动性对电网的冲击,常引入储能装置平抑其输出功率波动。为响应低碳发展进程并考虑到风电的不确定性使得基于某一典型风电出力场景的储能容量配置方法具有局限性,综合考虑海上风电场的售电收益、碳交易收益及储能系统的各项成本,提出一种考虑风电不确定性的海上风电场混合储能系统容量配置方法。采用随机机会约束规划法处理海上风电出力的不确定性,利用小波包分解方法对锂电池与超级电容进行功率分配,将分配方案与经济评价相结合,并建立风储系统优化运行模型,以系统日净收益最大为目标,对其容量进行优化配置。以国内某海上风电场实测数据为例进行仿真,验证了所提方案的有效性和经济性,同时系统采用混合储能比单一储能更具有优越性。 展开更多
关键词 海上风电 平抑波动 不确定性 碳交易收益 小波包分解 混合储能 容量优化
在线阅读 下载PDF
基于PCA和自联想神经网络的核环境冷挤压切割刀具状态监测
14
作者 袁沛 蒋君侠 +2 位作者 马飞 金杰峰 来建良 《浙江大学学报(工学版)》 北大核心 2025年第3期606-615,共10页
在高放射性环境中,传感器部署受限,传动链噪声干扰,冷挤压切割刀具一致性差.为此提出基于外置电机旋转轴与进给轴电机扭矩信号的时频域统计、主成分分析(PCA)与自联想神经网络(AANN)相结合的刀具状态监测模型.基于旋转电机及进给电机扭... 在高放射性环境中,传感器部署受限,传动链噪声干扰,冷挤压切割刀具一致性差.为此提出基于外置电机旋转轴与进给轴电机扭矩信号的时频域统计、主成分分析(PCA)与自联想神经网络(AANN)相结合的刀具状态监测模型.基于旋转电机及进给电机扭矩波形提取时域统计特征及小波包能量特征形成原始训练集,利用原始训练集初步训练AANN模型,使用PCA重构原始训练集用于优化AANN模型局部结构参数,形成PCA-AANN刀具状态监测模型.基于实际样机的切割试验采集扭矩数据,对提出的PCA-AANN和现有AANN模型进行分析对比,结果表明PCA的引入有助于提高AANN模型鲁棒性,能有效降低刀具工作状态误报率,实现放射性环境下刀具状态的准确监测.所提方法为放射性环境中类似长传动链设备的状态监测提供了借鉴. 展开更多
关键词 放射性 刀具状态监测 时域统计 小波包分解 主成分分析 自联想神经网络
在线阅读 下载PDF
三相电动机和变频器负载条件下串联故障电弧频域特征研究
15
作者 高悦哲 王智勇 +2 位作者 郭凤仪 高洪鑫 吕玉泽 《电气工程学报》 北大核心 2025年第2期149-156,共8页
串联故障电弧是引发电气火灾的主要原因之一。提出一种基于小波包分解(Wavelet packet decomposition,WPD)能量占比变化率的特征频段筛选方法和基于有限长单位冲激响应(Finite impulse response,FIR)滤波器的故障特征提取方法。针对工... 串联故障电弧是引发电气火灾的主要原因之一。提出一种基于小波包分解(Wavelet packet decomposition,WPD)能量占比变化率的特征频段筛选方法和基于有限长单位冲激响应(Finite impulse response,FIR)滤波器的故障特征提取方法。针对工业领域广泛使用的三相电动机和变频器负载开展了三相回路中的串联故障电弧试验;采用WPD对电流信号进行了9层分解,利用各个频段信号在故障发生前后的能量占比变化率确定串联故障电弧的特征频段;利用FIR滤波器提取故障电流的特征频段信号,以特征频段信号绝对值平均值、峭度作为串联故障电弧特征;结合经粒子群和网格搜寻优化的支持向量机(Support vectormachine,SVM)对串联故障电弧进行识别。结果表明,三相电动机和变频器回路中串联故障电弧共同的特征频段为1.56~1.76 kHz、2.93~6.25 kHz、9.38~10.94 kHz,所提出的串联故障电弧检测方法可以准确地检测出该回路发生串联故障电弧。 展开更多
关键词 串联故障电弧 频域特征 小波包分解 有限长单位冲激响应滤波器 支持向量机
在线阅读 下载PDF
弯曲载荷下含预制裂纹杉木梁细观损伤特征与识别
16
作者 马荣宇 赵东 +2 位作者 于立川 赵健 刘嘉辉 《林业工程学报》 北大核心 2025年第3期25-32,共8页
工程实际应用中,作为木结构建筑物的主要承重构件,木梁的失效形式主要是弯曲损伤。不同于拉伸、压缩损伤中细观损伤形式的单一性,弯曲损伤过程的不同阶段会产生不同的损伤类型,并且同一阶段内会出现多种细观损伤类型。相对于单一损伤,... 工程实际应用中,作为木结构建筑物的主要承重构件,木梁的失效形式主要是弯曲损伤。不同于拉伸、压缩损伤中细观损伤形式的单一性,弯曲损伤过程的不同阶段会产生不同的损伤类型,并且同一阶段内会出现多种细观损伤类型。相对于单一损伤,这种复杂力学行为的损伤识别与判定难度大大增加。以杉木(Cunninghamia lanceolate)为研究对象,设计试验对杉木在三点弯曲损伤过程中的声发射信号进行采集、监测与分析,通过小波包阈值法消除损伤试验中采集的声发射信号噪声。根据损伤过程的不同阶段,基于经验模态分解从原始信号中提取并分离能够表征细观损伤的特征信号;再利用提取出的特征信号小波包能量熵为损伤指数,判断各损伤阶段出现的不同损伤类型。通过特征信号与原信号的互相关系数,对各损伤阶段的损伤类型占比进行定量表征,确定了各阶段对应的不同细观损伤类型及占比。结果表明:经验模态分解-小波包能量熵法可以有效判断杉木三点弯曲过程不同阶段产生的细观损伤类型和构成;同时,声发射信号IMF分量与原信号的相关系数能够判定杉木三点弯曲过程中不同损伤阶段对应的细观损伤占比。本研究提出了在弯曲载荷作用下木梁的细观损伤识别方法,为木材损伤机理的研究和服役木质结构健康监测提供有力的理论支撑。 展开更多
关键词 木材损伤识别 预制裂纹 弯曲载荷 多细观损伤 声发射 小波包能量熵 经验模态分解
在线阅读 下载PDF
融合音频信号多特征信息的输电铁塔螺栓预紧力定量检测方法
17
作者 王彤 张巍 +1 位作者 蔡泽江 江文强 《科学技术与工程》 北大核心 2025年第23期9812-9820,共9页
螺栓连接因其高可靠性、便于安装与维护的特点,广泛应用于输电铁塔结构,由于长期受到静动态载荷的影响,容易引发螺栓连接松动,造成结构承载能力下降,危及电力系统安全。针对上述问题提出了一种基于音频信号多特征信息的智能检测方法,选... 螺栓连接因其高可靠性、便于安装与维护的特点,广泛应用于输电铁塔结构,由于长期受到静动态载荷的影响,容易引发螺栓连接松动,造成结构承载能力下降,危及电力系统安全。针对上述问题提出了一种基于音频信号多特征信息的智能检测方法,选用输电铁塔中典型螺栓连接节点,通过定点锤击收集了不同预紧力状态的音频信号,基于小波包分解信号处理技术,获取了信号的能量值松动指标,并利用粒子群算法实现惩罚因子与核函数参数的优化,提出了融合音频信号多特征信息的支持向量机模型,实现了螺栓预紧力的定量识别。研究结果表明:粒子群优化支持向量机模型在分类准确率方面得到明显提高,最高准确率达到93.42%,相比优化前,模型识别准确率提高了9.2%,为输电铁塔中螺栓预紧力检测提供了有效方法。 展开更多
关键词 输电铁塔 螺栓预紧力 音频信号 小波包分解 粒子群算法
在线阅读 下载PDF
基于WPD-CNN的补偿电容故障诊断方法研究 被引量:1
18
作者 罗泽霖 孟景辉 +3 位作者 刘金朝 罗依梦 许庆阳 解婉茹 《铁道标准设计》 北大核心 2025年第1期191-197,共7页
为进一步挖掘动态检测数据中蕴含的补偿电容状态特征,针对ZPW-2000A型轨道电路,结合小波包分解与卷积神经网络,提出一种基于WPD-CNN的补偿电容故障诊断方法。采用功率谱分析的方法,找出检测曲线中趋势项特征与补偿电容特征所在频带范围... 为进一步挖掘动态检测数据中蕴含的补偿电容状态特征,针对ZPW-2000A型轨道电路,结合小波包分解与卷积神经网络,提出一种基于WPD-CNN的补偿电容故障诊断方法。采用功率谱分析的方法,找出检测曲线中趋势项特征与补偿电容特征所在频带范围,然后利用小波包分解方法对原始信号进行分解,提取其中特征频带内的小波包系数构造补偿电容特征矩阵。使用动态检测数据构造训练集与测试集,将不同故障类型的特征矩阵输入卷积神经网络进行训练学习,并在测试集上进行验证。实验结果表明,WPD-CNN方法对单个信号的特征提取用时5.9 ms,总体故障识别准确率为98.4%,可有效识别不同位置的补偿电容故障问题,为补偿电容故障诊断提供依据。 展开更多
关键词 轨道电路 补偿电容 动态检测 小波包分解 卷积神经网络 故障诊断
在线阅读 下载PDF
多传感器信息融合技术下变电站汇控柜状态监测方法
19
作者 杨洋 谢青洋 苏适 《传感技术学报》 北大核心 2025年第7期1208-1213,共6页
对变电站汇控柜的状态展开实时传感监测,能够有效预防由变电站故障引起的停电、火灾等情况的发生,为此,提出一种基于多传感器信息融合技术的变电站汇控柜状态监测方法。通过分布图和自适应加权法实现不同传感器的变电站汇控柜数据信息融... 对变电站汇控柜的状态展开实时传感监测,能够有效预防由变电站故障引起的停电、火灾等情况的发生,为此,提出一种基于多传感器信息融合技术的变电站汇控柜状态监测方法。通过分布图和自适应加权法实现不同传感器的变电站汇控柜数据信息融合,以提高融合后状态信息的准确性。对融合后的变电站汇控柜状态信息进行小波包分解,并对分解系数进行重构,以提取关键的状态特征。将提取到的状态特征输入到最小二乘支持向量机模型中,实现对变电站汇控柜状态的监测和分类。实验结果表明,所提方法融合处理汇控柜信息的时间低于45 ms,特征提取准确率高于95%,监测信息与真实信息基本一致,汇控柜状态监测效果较好。 展开更多
关键词 变电站汇控柜 状态监测 多传感器信息融合 小波包分解 自适应加权算法
在线阅读 下载PDF
基于改进EMD的爆破振动信号降噪方法研究
20
作者 闫鹏 张云鹏 +1 位作者 周倩倩 杨曦 《振动与冲击》 北大核心 2025年第1期212-220,共9页
针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类... 针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类特性以及小波包的降噪优势,不仅可以有效抑制端点效应,也具有良好的降噪效果。研究结果表明:在仿真信号端点效应抑制试验中,与多项式拟合和边界局部特征延拓方法相比,改进EMD方法的能量误差和均方误差最小。在实测爆破振动信号降噪中,与EMD和变分模态分解(VMD)方法相比,改进EMD方法的信噪比(20.94 dB)最大,均方根误差(0.0031)最小。改进EMD方法不仅可以较好保存中低频(0~200 Hz)信号能量,对200 Hz以上高频噪声也具有良好滤除效果。 展开更多
关键词 经验模态分解(EMD) 爆破振动信号 端点效应 K-MEANS算法 小波包 降噪
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部