The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formul...The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formula based on continuous wavelet transform. For an arbitrary given square-integrable function f(t),g(t) = f(t/λ) is derived by continuous wavelet transform and its inverse transform. The result shows that time-scale transformation may be obtained through the modification of the time-scale of wavelet function filter using equivalent substitution. The paper demonstrates the result by theoretic derivations and experimental simulation.展开更多
It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite diff...It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
文摘The basic objective of time-scale transformation is to compress or expand the signal in time field while keeping the same spectral properties. This paper presents two methods to derive time-scale transformation formula based on continuous wavelet transform. For an arbitrary given square-integrable function f(t),g(t) = f(t/λ) is derived by continuous wavelet transform and its inverse transform. The result shows that time-scale transformation may be obtained through the modification of the time-scale of wavelet function filter using equivalent substitution. The paper demonstrates the result by theoretic derivations and experimental simulation.
基金supported by National Basic Research Program of China(973 Program)
文摘It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.