With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat tr...With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.展开更多
Studies of post-fire soil status in Mediterranean ecosystems are common;however,few have examined the effects of long-term forest management after a wildfire on physicochemical soil properties.Here,we analyzed differe...Studies of post-fire soil status in Mediterranean ecosystems are common;however,few have examined the effects of long-term forest management after a wildfire on physicochemical soil properties.Here,we analyzed differences in soil properties attributable to long-term postfire management and assessed the sustainability of these management practices in relation to the soil properties.The study area is located in Odena in the northeast region of the Iberian Peninsula consisted of the control forest(burned more than 30 years ago),low density forest(LD;burned in a wildfire in 1986 and managed in 2005)and high density forest(HD;burned in a wildfire in 1986 and no managed).For soils from each plot,we measured soil water repellency,aggregate stability,total nitrogen(TN),soil organic matter(SOM),inorganic carbon(IC),pH,electrical conductivity,extractable calcium,magnesium,sodium,potassium(K),phosphorus,aluminum(Al),manganese(Mn),iron(Fe),zinc,copper,boron,chrome,silicon and sulfur and calculated the ratios of C/N,Ca+Mg/(Na+K)^1/2,Ca/Al and Ca/Mg.Significant differences were found in TN,IC,SOM,pH,K,Al,Mn,Fe and C/N ratio(p<0.05).All soil properties were found to have largely recovered their pre-fire values.Soils were affected by the post-fire management practices implemented 20 years after the fire,as reflected in their respective physicochemical properties,so that soil properties at the control and LD sites are more similar today than those at the control and HD sites.Thus,sustainable forest management can overcome soil degradation in areas affected by wildfire in the medium-and long-term by improving soil properties.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52271320)"Mechanics+"interdisciplinary innovation youth fund project of Ningbo University(LJ2023005).
文摘With the increasing requirements for fast charging and discharging,higher requirements have been put forward for the thermal management of power batteries.Therefore,there is an urgent need to develop efficient heat transfer fluids.As a new type of heat transfer fluids,functional thermal fluids mainly includ-ing nanofluids(NFs)and phase change fluids(PCFs),have the advantages of high heat carrying density,high heat transfer rate,and broad operational temperature range.However,challenges that hinder their practical applications remain.In this paper,we firstly overview the classification,thermophysical prop-erties,drawbacks,and corresponding modifications of functional thermal fluids.For NFs,the high ther-mal conductivity and high convective heat transfer performance were mainly elaborated,while the stability and viscosity issues were also analyzed.And then for PCFs,the high heat carrying density was mainly elaborated,while the problems of supercooling,stability,and viscosity were also analyzed.On this basis,the composite fluids combined NFs and PCFs technology,has been summarized.Furthermore,the thermal properties of traditional fluids,NFs,PCFs,and composite fluids are compared,which proves that functional thermal fluids are a good choice to replace traditional fluids as coolants.Then,battery thermal management system(BTMS)based on functional thermal fluids is summarized in detail,and the thermal management effects and pump consumption are compared with that of water-based BTMS.Finally,the current technical challenges that parameters optimization of functional thermal fluids and structures optimization of BTMS systematically are presented.In the future,it is necessary to pay more attention to using machine learning to predict thermophysical properties of functional thermal fluids and their applications for BTMS under actual vehicle conditions.
基金supported by the POSTFIRE Project(CGL2013-47862-C2-1 and 2-R)the POSTFIRE_CARE Project(CGL2016-75178-C2-2-R [AEI/FEDER,UE])+3 种基金financed by the Spanish Research Agency(AIE)the European Union through European Funding for Regional Development(FEDER)the FPU Program(FPU 014/00037)of the Ministry of Education,Culture and SportsProgram 2014SGR825 and 2017SGR1344 of the Generalitat de Catalunya
文摘Studies of post-fire soil status in Mediterranean ecosystems are common;however,few have examined the effects of long-term forest management after a wildfire on physicochemical soil properties.Here,we analyzed differences in soil properties attributable to long-term postfire management and assessed the sustainability of these management practices in relation to the soil properties.The study area is located in Odena in the northeast region of the Iberian Peninsula consisted of the control forest(burned more than 30 years ago),low density forest(LD;burned in a wildfire in 1986 and managed in 2005)and high density forest(HD;burned in a wildfire in 1986 and no managed).For soils from each plot,we measured soil water repellency,aggregate stability,total nitrogen(TN),soil organic matter(SOM),inorganic carbon(IC),pH,electrical conductivity,extractable calcium,magnesium,sodium,potassium(K),phosphorus,aluminum(Al),manganese(Mn),iron(Fe),zinc,copper,boron,chrome,silicon and sulfur and calculated the ratios of C/N,Ca+Mg/(Na+K)^1/2,Ca/Al and Ca/Mg.Significant differences were found in TN,IC,SOM,pH,K,Al,Mn,Fe and C/N ratio(p<0.05).All soil properties were found to have largely recovered their pre-fire values.Soils were affected by the post-fire management practices implemented 20 years after the fire,as reflected in their respective physicochemical properties,so that soil properties at the control and LD sites are more similar today than those at the control and HD sites.Thus,sustainable forest management can overcome soil degradation in areas affected by wildfire in the medium-and long-term by improving soil properties.