SHTQS is an intelligent telephone-besed spoken dialyze system providing the infomation about the best route between two sites in Shanghai. Instead of separated parts of speech decoding and language parsing, a close co...SHTQS is an intelligent telephone-besed spoken dialyze system providing the infomation about the best route between two sites in Shanghai. Instead of separated parts of speech decoding and language parsing, a close cool,ration is carded out in SHTQS by integrating automatic speech recognizer (AS,R), language understanding, dialogue management and speech generatot. In such a way, the erroneous analysis and uncertainty happening in the preceding stages would be recovered and determined acourately with high-level knowledge, Moreover, instead of shallow word-level analysis or simply keyword or key phrase matching, a deeper analysis is performed in our system by integrating a robust parser and a semantic interpreter. The robust parser is particularly important for spontanecos speech inputs because most of the inquiry sentences/phrases are ill-formed. In addition, in designinga mixed-initiative dialogue system, understanding users' inquiries is essential; however, simply matching keywords and/or key phrases can hardly achieve this. Therefore, a semantic interpreter is incorporated in oar system. The performnce of is also evaluated. The dialogue efficiency is 4.4 sentences per query on an average and the case precision rate of language understanding module is up to 81%. The results are satisfactory.展开更多
ChatGPT引发了新一轮的科技革命,使得对话系统成为研究热点。口语理解(Spoken Language Understanding,SLU)作为任务型对话系统的第一部分,对系统整体的表现具有重要影响。在最近几年中,得益于大规模语言模型的成功,口语理解任务取得了...ChatGPT引发了新一轮的科技革命,使得对话系统成为研究热点。口语理解(Spoken Language Understanding,SLU)作为任务型对话系统的第一部分,对系统整体的表现具有重要影响。在最近几年中,得益于大规模语言模型的成功,口语理解任务取得了较大的发展。然而,现有工作大多基于书面语数据集完成,无法很好地应对真实口语场景。为此,该文面向与书面语相对的口语,重点关注医疗领域这一应用场景,对现有的医疗领域对话系统口语理解任务进行综述。具体地,该文阐述了医疗口语理解任务的难点与挑战,并从数据集、算法和应用的层面梳理了医疗口语理解的研究现状及不足之处。最后,该文结合生成式大模型的最新进展,给出了医疗口语理解问题新的研究方向。展开更多
口语理解(spoken language understanding,SLU)是面向任务的对话系统的核心组成部分,旨在提取用户查询的语义框架.在对话系统中,口语理解组件(SLU)负责识别用户的请求,并创建总结用户需求的语义框架,SLU通常包括两个子任务:意图检测(int...口语理解(spoken language understanding,SLU)是面向任务的对话系统的核心组成部分,旨在提取用户查询的语义框架.在对话系统中,口语理解组件(SLU)负责识别用户的请求,并创建总结用户需求的语义框架,SLU通常包括两个子任务:意图检测(intent detection,ID)和槽位填充(slot filling,SF).意图检测是一个语义话语分类问题,在句子层面分析话语的语义;槽位填充是一个序列标注任务,在词级层面分析话语的语义.由于意图和槽之间的密切相关性,主流的工作采用联合模型来利用跨任务的共享知识.但是ID和SF是两个具有强相关性的不同任务,它们分别表征了话语的句级语义信息和词级信息,这意味着两个任务的信息是异构的,同时具有不同的粒度.提出一种用于联合意图检测和槽位填充的异构交互结构,采用自注意力和图注意力网络的联合形式充分地捕捉两个相关任务中异构信息的句级语义信息和词级信息之间的关系.不同于普通的同构结构,所提模型是一个包含不同类型节点和连接的异构图架构,因为异构图涉及更全面的信息和丰富的语义,同时可以更好地交互表征不同粒度节点之间的信息.此外,为了更好地适应槽标签的局部连续性,利用窗口机制来准确地表示词级嵌入表示.同时结合预训练模型(BERT),分析所提出模型应用预训练模型的效果.所提模型在两个公共数据集上的实验结果表明,所提模型在意图检测任务上准确率分别达到了97.98%和99.11%,在槽位填充任务上F1分数分别达到96.10%和96.11%,均优于目前主流的方法.展开更多
文摘SHTQS is an intelligent telephone-besed spoken dialyze system providing the infomation about the best route between two sites in Shanghai. Instead of separated parts of speech decoding and language parsing, a close cool,ration is carded out in SHTQS by integrating automatic speech recognizer (AS,R), language understanding, dialogue management and speech generatot. In such a way, the erroneous analysis and uncertainty happening in the preceding stages would be recovered and determined acourately with high-level knowledge, Moreover, instead of shallow word-level analysis or simply keyword or key phrase matching, a deeper analysis is performed in our system by integrating a robust parser and a semantic interpreter. The robust parser is particularly important for spontanecos speech inputs because most of the inquiry sentences/phrases are ill-formed. In addition, in designinga mixed-initiative dialogue system, understanding users' inquiries is essential; however, simply matching keywords and/or key phrases can hardly achieve this. Therefore, a semantic interpreter is incorporated in oar system. The performnce of is also evaluated. The dialogue efficiency is 4.4 sentences per query on an average and the case precision rate of language understanding module is up to 81%. The results are satisfactory.
文摘ChatGPT引发了新一轮的科技革命,使得对话系统成为研究热点。口语理解(Spoken Language Understanding,SLU)作为任务型对话系统的第一部分,对系统整体的表现具有重要影响。在最近几年中,得益于大规模语言模型的成功,口语理解任务取得了较大的发展。然而,现有工作大多基于书面语数据集完成,无法很好地应对真实口语场景。为此,该文面向与书面语相对的口语,重点关注医疗领域这一应用场景,对现有的医疗领域对话系统口语理解任务进行综述。具体地,该文阐述了医疗口语理解任务的难点与挑战,并从数据集、算法和应用的层面梳理了医疗口语理解的研究现状及不足之处。最后,该文结合生成式大模型的最新进展,给出了医疗口语理解问题新的研究方向。
文摘口语理解(spoken language understanding,SLU)是面向任务的对话系统的核心组成部分,旨在提取用户查询的语义框架.在对话系统中,口语理解组件(SLU)负责识别用户的请求,并创建总结用户需求的语义框架,SLU通常包括两个子任务:意图检测(intent detection,ID)和槽位填充(slot filling,SF).意图检测是一个语义话语分类问题,在句子层面分析话语的语义;槽位填充是一个序列标注任务,在词级层面分析话语的语义.由于意图和槽之间的密切相关性,主流的工作采用联合模型来利用跨任务的共享知识.但是ID和SF是两个具有强相关性的不同任务,它们分别表征了话语的句级语义信息和词级信息,这意味着两个任务的信息是异构的,同时具有不同的粒度.提出一种用于联合意图检测和槽位填充的异构交互结构,采用自注意力和图注意力网络的联合形式充分地捕捉两个相关任务中异构信息的句级语义信息和词级信息之间的关系.不同于普通的同构结构,所提模型是一个包含不同类型节点和连接的异构图架构,因为异构图涉及更全面的信息和丰富的语义,同时可以更好地交互表征不同粒度节点之间的信息.此外,为了更好地适应槽标签的局部连续性,利用窗口机制来准确地表示词级嵌入表示.同时结合预训练模型(BERT),分析所提出模型应用预训练模型的效果.所提模型在两个公共数据集上的实验结果表明,所提模型在意图检测任务上准确率分别达到了97.98%和99.11%,在槽位填充任务上F1分数分别达到96.10%和96.11%,均优于目前主流的方法.