期刊文献+
共找到2,414篇文章
< 1 2 121 >
每页显示 20 50 100
Fuzzy least squares support vector machine soft measurement model based on adaptive mutative scale chaos immune algorithm 被引量:8
1
作者 王涛生 左红艳 《Journal of Central South University》 SCIE EI CAS 2014年第2期593-599,共7页
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou... In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%. 展开更多
关键词 CHAOS immune algorithm FUZZY support vector machine
在线阅读 下载PDF
Hooke and Jeeves algorithm for linear support vector machine 被引量:1
2
作者 Yeqing Liu Sanyang Liu Mingtao Gu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期138-141,共4页
Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while... Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification. 展开更多
关键词 support vector machine CLASSIFICATION pattern search Hooke and Jeeves coordinate descent global Newton algorithm.
在线阅读 下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
3
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
在线阅读 下载PDF
Adjustable entropy function method for support vector machine 被引量:4
4
作者 Wu Qing Liu Sanyang Zhang Leyou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1029-1034,共6页
Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the... Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 OPTIMIZATION support vector machine adjustable entropy function Newton algorithm.
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
5
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Improved scheme to accelerate sparse least squares support vector regression
6
作者 Yongping Zhao Jianguo Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期312-317,共6页
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p... The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem. 展开更多
关键词 least squares support vector regression machine pruning algorithm iterative methodology classification.
在线阅读 下载PDF
融合改进卷积神经网络和层次SVM的鸡蛋外观检测 被引量:1
7
作者 姚万鹏 张凌晓 +1 位作者 赵肖峰 王飞成 《食品与机械》 北大核心 2025年第1期158-164,共7页
[目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2... [目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2)设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。(3)建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。[结果]所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。[结论]所提方法能够有效实现对鸡蛋的在线实时精细化分类。 展开更多
关键词 鸡蛋外观 卷积神经网络 浣熊优化算法 支持向量机 特征提取
在线阅读 下载PDF
电力变压器内部故障的递进分层诊断方法 被引量:1
8
作者 咸日常 李云淏 +4 位作者 刘焕国 王昭璇 张海强 胡玉耀 王玮 《电网技术》 北大核心 2025年第4期1726-1734,I0079,I0080,共11页
电力变压器内部故障成因复杂、种类繁多,精确诊断难度大,现有诊断技术大多滞留于故障定性阶段。为实现多类型故障的精准定位,该文通过建立多状态量与故障特征之间的递进映射关系,提出一种改进灰狼算法与最小二乘支持向量机耦合的电力变... 电力变压器内部故障成因复杂、种类繁多,精确诊断难度大,现有诊断技术大多滞留于故障定性阶段。为实现多类型故障的精准定位,该文通过建立多状态量与故障特征之间的递进映射关系,提出一种改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障递进分层诊断方法。首先介绍改进灰狼算法与最小二乘支持向量机的原理,建立电力变压器故障递进分层、自动诊断及定位模型;其次基于300组电力变压器的状态量,利用核主成分分析法进行降维处理,选取线性无关的特征状态量,依据DL/T 1685—2017《油浸式变压器状态评价导则》进行离散化处理,借助算法模型递进分层、自动诊断:第一层诊断故障回路、第二层确定故障部位、第三层明确故障原因,得到各分类器的诊断准确率及惩罚系数和核函数参数的最优组合解,并与其他算法模型的故障诊断结果进行分析对比;最后以实际故障案例验证方法的有效性。结果表明:该文所提诊断模型比其他方法拥有更高准确率和更快的运算速度。 展开更多
关键词 电力变压器 改进灰狼算法 最小二乘支持向量机 多状态量 内部故障 递进分层诊断
在线阅读 下载PDF
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:1
9
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于机器视觉的海鲜花螺分类研究
10
作者 陈林涛 陈睿 +2 位作者 蓝莹 梁国健 牟向伟 《水生生物学报》 北大核心 2025年第2期138-145,共8页
针对目前人工分选海鲜花螺劳动强度大、人工成本高的问题,研究提出一种DPO-SVM海鲜花螺公母分类模型。通过灰度共生矩阵分析提取海鲜花螺外壳间隔纹理特征量,采用SVM作为公母分类模型基体,对不同纹理特征量组合进行分类效果对比,得出使... 针对目前人工分选海鲜花螺劳动强度大、人工成本高的问题,研究提出一种DPO-SVM海鲜花螺公母分类模型。通过灰度共生矩阵分析提取海鲜花螺外壳间隔纹理特征量,采用SVM作为公母分类模型基体,对不同纹理特征量组合进行分类效果对比,得出使用能量、熵、对比度3种特征量分类效果最好的结论。针对SVM优化问题,以PSO和WOA算法为基础提出DPO算法对SVM的重要参数c、g进行优化;对DPO-SVM性能进行测试,将测试结果与SVM、PSO-SVM、WOA-SVM测试结果对比。相比于其他3种SVM模型,DPOSVM分类准确率大幅度提升,相比于SVM,分类总准确率由85%上升至100%,上升了15%;DPO算法提高了单种群优化算法的寻优性能,相比于PSO算法,DPO算法将最佳适应度从95.26提升至98.68,提升幅度为3.47%。此外,达到最佳适应度的迭代次数由14次减少至6次,下降57.14%,显著优化了收敛速度。研究结果可为自动分拣装置中海鲜花螺公母分类提供技术参考。 展开更多
关键词 机器视觉 花螺分选 外壳 纹理特征 支持向量机 算法
在线阅读 下载PDF
多道次变形条件下V-N微合金钢的流变应力模型
11
作者 周晓光 赵金帆 +1 位作者 姜珊 曹光明 《东北大学学报(自然科学版)》 北大核心 2025年第2期35-41,共7页
为建立多道次变形条件下V-N微合金钢的流变应力模型,采用DIL805热膨胀相变仪对实验钢进行了多道次压缩实验,并绘制了应力-应变曲线.Hensel-Spittel模型高精度地模拟了实验钢在单道次变形条件下的流变应力.当变形温度和应变速率不变时,... 为建立多道次变形条件下V-N微合金钢的流变应力模型,采用DIL805热膨胀相变仪对实验钢进行了多道次压缩实验,并绘制了应力-应变曲线.Hensel-Spittel模型高精度地模拟了实验钢在单道次变形条件下的流变应力.当变形温度和应变速率不变时,采用遗传算法优化了多道次变形条件下Hensel-Spittel模型参数.基于支持向量机(support vector machine,SVM)算法建立了变形前静态再结晶体积分数、变形前奥氏体晶粒尺寸、位错密度、变形温度和应变速率与模型参数的对应关系.结果表明,多道次变形条件下流变应力预测值与实测值吻合良好.研究结果为精准描述多道次变形条件下V-N微合金钢的流变应力提供了有力的支持. 展开更多
关键词 流变应力 遗传算法 静态再结晶 位错密度 支持向量机算法
在线阅读 下载PDF
基于BOA-SVM的冷源系统温度传感器偏差故障检测
12
作者 周璇 闫学成 +1 位作者 闫军威 梁列全 《控制理论与应用》 北大核心 2025年第5期921-930,共10页
针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性... 针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性故障数据,同时克服了SVM算法对核函数参数与惩罚因子强敏感性的问题.论文建立了广州市某办公建筑冷源系统Trnsys仿真模型,对室外干球、冷冻供水与冷却进水3种温度传感器不同程度的偏差故障进行模拟.仿真结果表明,与本文提出的其他方法相比,该方法准确率高,泛化能力及鲁棒性强,能够满足冷源系统温度传感器偏差故障的检测需求,保障空调系统的安全、高效与稳定运行. 展开更多
关键词 冷源系统 温度传感器 贝叶斯优化 支持向量机 故障检测 TRNSYS
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
13
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
14
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于改进乌燕鸥算法同步优化SVM的特征选择
15
作者 赵小强 缐文霞 《兰州理工大学学报》 北大核心 2025年第3期89-98,共10页
针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响的问题,提出了一种基于改进乌燕鸥算法同步优化SVM的特征选择算法.首先利用Tent混沌映射对乌燕鸥种群初始化,增加种群多样性,在此基础上引入余弦自适应并结合模拟退火算法... 针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响的问题,提出了一种基于改进乌燕鸥算法同步优化SVM的特征选择算法.首先利用Tent混沌映射对乌燕鸥种群初始化,增加种群多样性,在此基础上引入余弦自适应并结合模拟退火算法,避免乌燕鸥算法陷入局部最优的缺陷,增强算法全局搜索能力,提高收敛精度;其次将改进算法同特征选择和支持向量机相结合,同步优化二进制特征选择和SVM的参数;最后在10个标准数据集上进行特征选择仿真对比实验,实验结果表明相比原始算法及其他对比优化算法,所提算法能有效降低数据维度,提高分类准确率. 展开更多
关键词 乌燕鸥优化算法 余弦自适应 模拟退火算法 支持向量机 特征选择
在线阅读 下载PDF
基于鲸鱼优化算法-支持向量机判别模型的风化基岩富水性评价:以神府煤田张家峁煤矿为例
16
作者 侯恩科 吴家镁 +1 位作者 杨帆 张池 《科学技术与工程》 北大核心 2025年第1期119-127,共9页
为实现风化基岩含水层富水性的准确预测,以张家峁井田内的28组风化基岩抽水试验钻孔数据作为训练及验证样本,选取风化基岩的岩性组合指数、风化指数、厚度、岩芯采取率、埋深作为评价指标,提出基于鲸鱼优化算法-支持向量机(whale optimi... 为实现风化基岩含水层富水性的准确预测,以张家峁井田内的28组风化基岩抽水试验钻孔数据作为训练及验证样本,选取风化基岩的岩性组合指数、风化指数、厚度、岩芯采取率、埋深作为评价指标,提出基于鲸鱼优化算法-支持向量机(whale optimization algorithm-support vector machines,WOA-SVM)的风化基岩含水层富水性判别模型。该模型可对无抽水试验资料区域的风化基岩的富水性级别进行预测,综合利用井田内249组勘探钻孔的地质信息,实现井田的风化基岩富水性分区。研究表明,张家峁井田风化基岩整体富水性较弱,且空间分布不均;井田中部和乌兰不拉沟沿线的局部地区存在强富水性区域,但其分布范围较小,中西部和东南部有部分中等富水性区域,东北部及西南部区域几乎全为弱和极弱富水性。该方法预测的结果与实际较为吻合,研究成果可为矿井安全生产提供参考,也为风化基岩富水性预测提供了一种新思路。 展开更多
关键词 风化基岩 支持向量机(SVM) 鲸鱼优化(WOA) 富水性分区
在线阅读 下载PDF
基于改进北方苍鹰算法优化SVM的轴承故障诊断研究
17
作者 吴晓君 李渠伟 《机械强度》 北大核心 2025年第5期80-89,共10页
针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自... 针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization,NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization,PSO)算法、麻雀搜索算法(Sparrow Search Algorithm,SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 改进北方苍鹰优化算法 柯西变异策略 小波包分解 支持向量机
在线阅读 下载PDF
样本不平衡条件下煤矿突水水源识别——以谢桥煤矿为例
18
作者 王彦彬 闫晓杉 《安全与环境学报》 北大核心 2025年第7期2553-2561,共9页
为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条... 为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条谢桥煤矿水化学数据进行分析,首先对样本数据进行标准化处理和主成分分析(Principal Component Analysis, PCA),将数据集划分为训练集和测试集,对训练集中少数类样本采用SMOTE法生成新的样本,然后采用改进混沌哈里斯鹰优化(Chaos Harris Hawks Optimization, CHHO)算法结合十折交叉验证优化支持向量机惩罚因子C和径向基函数(Radial Basis Function, RBF)核的参数γ,根据优化结果建立突水水源识别模型,对测试集中突水水源进行识别。将该方法与朴素贝叶斯、随机森林所得结果进行比较,结果显示,采用本方法对测试集识别结果准确性优于其他两种方法,表明该方法在突水水源识别上具有良好的实用性和有效性。 展开更多
关键词 安全工程 突水水源识别 主成分分析 合成少数类过采样技术 混沌哈里斯鹰优化算法 支持向量机
在线阅读 下载PDF
新能源汽车驱动电机冷却系统劣化故障预测
19
作者 柳炽伟 黄韵迪 《汽车安全与节能学报》 北大核心 2025年第2期277-285,共9页
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行... 提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行降维重构处理,蝗虫算法(GOA)用来优化最小二乘支持向量机(LSSVM)的参数。通过实车故障试验采集样本数据,分别输入至LSSVM预测模型、PCA-PSO-SVM及PCA-GOA-LSSVM模型,进行对比测试。结果表明:基于PCA-GOA-LSSVM的多分类器预测模型准确率达91.41%、精确率达86.25%,高于对比的预测模型,可准确提醒及时维护车辆及有效判断故障类型;该模型能够用于新能源汽车驱动电机冷却系统性能劣化预测和故障诊断中。 展开更多
关键词 新能源汽车 驱动电机冷却系统 故障预测 最小二乘支持向量机(LSSVM) 蝗虫算法(GOA) 主成分分析(PCA)
在线阅读 下载PDF
基于PCA-DBO-SVR的林地土壤有机质高光谱反演模型 被引量:2
20
作者 邓昀 王君 +1 位作者 陈守学 石媛媛 《光谱学与光谱分析》 北大核心 2025年第2期569-583,共15页
森林土壤有机碳(SOC)是土壤中的有机物质(SOM)的碳部分,它对维持森林生态系统的平衡和稳定非常重要。传统实验通过化学方法分析土壤中有机物质的含量进而计算土壤中的有机碳,此类化学方法费时费力且产生化学废水污染环境。高光谱技术可... 森林土壤有机碳(SOC)是土壤中的有机物质(SOM)的碳部分,它对维持森林生态系统的平衡和稳定非常重要。传统实验通过化学方法分析土壤中有机物质的含量进而计算土壤中的有机碳,此类化学方法费时费力且产生化学废水污染环境。高光谱技术可以非接触、高效率地检测出土壤的养分信息。针对现有机器学习土壤有机质预测模型的精度和计算效率方面的不足,以广西国有黄冕林场和国有雅长林场为土壤样品采集点,基于全光谱数据利用主成分分析算法(PCA)筛选特征波段的最佳波长数量,并利用比一阶微分处理数据更加精细且能平衡光谱噪声和光谱分辨率之间的关系的分数阶微分为预处理方法之一对光谱数据进行变换处理,最后采用相对于传统的中心化算法拥有较高鲁棒性和容错能力的蜣螂算法(DBO)对支持向量回归机(SVR)的高斯核函数的参数组合进行优化。研究结果表明,PCA-DBO-SVR模型可以有效提高土壤有机质预测的决定系数R^(2)并降低预测均方根误差(RMSE)。PCA-DBO-SVR在对比预测模型中表现出最佳的泛化性能和准确度,其验证集R^(2)为0.942,RMSE为2.989 g·kg^(-1),展现了较好的准确性。 展开更多
关键词 近红外光谱 分数阶微分 蜣螂优化算法 土壤养分预测 支持向量回归机
在线阅读 下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部