In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou...In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.展开更多
Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while...Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification.展开更多
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S...In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.展开更多
Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the...Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.展开更多
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ...A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM.展开更多
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p...The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.展开更多
基金Project(51176045)supported by the National Natural Science Foundation of ChinaProject(2011ZK2032)supported by the Major Soft Science Program of Science and Technology Ministry of Hunan Province,China
文摘In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.
基金supported by the National Natural Science Foundation of China (6057407560705004)
文摘Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification.
基金Projects(61471370,61401479)supported by the National Natural Science Foundation of China
文摘In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.
基金the National Natural Science Foundation of China (60574075)
文摘Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM.
基金supported by the National Natural Science Foundation of China(50576033)
文摘The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.