A predicted tau glutathione S-transferase(GST) subunit encoding gene,named GhGST,was isolated from Gossypium hirsutum with RACE method from SSH library based on Verticillium
Aim The expression of α3 subunit of nicotinic acetylcholine receptor (α3-nAChR) has been demonstra- ted in aorta, adipocyte and macrophage. The objective of the present study was to verify the regulatory roles of ...Aim The expression of α3 subunit of nicotinic acetylcholine receptor (α3-nAChR) has been demonstra- ted in aorta, adipocyte and macrophage. The objective of the present study was to verify the regulatory roles of α3- nAChR in the inflammatory responses of atherosclerosis. Methods The inflammatory indicators were detected in mouse macrophage, adipocytes and mouse aortic endothelial cells (MAECs) after the α3-nAChR was antagonized or after the α3-nAChR gene was silenced. Meanwhile, atherogenesis was induced in the apolipoprotein E knock-out ( ApoE^ -/- ) mice after fed with an atherogenic high-fat diet for 7 weeks. Results In MAECs, the lipopolysaccha- ride (LPS)-stimulated secretions of the adhesion molecules and inflammatory cytokines were significantly enhanced (30%± 80% ) after pretreatment with α-Conotoxin MII (an antagonist for α3-nAChR) or after knock-down with α3-nAChR gene. In adipocytes, the knock-down of α3 gene promoted the generations of the proin? ammatory adi- pokines or cytokines but decreased the production of adiponectin, an anti-inflammatory adipokine, by 29.29 ± 9.43%. In macrophage silenced with α3-nAChR gene, the M1 (classical) activation was predominantly stimula- ted, whereas the M2 (alternative) activation was suppressed. In addition, the amount of the atherosclerotic lesions and the infiltration of the M1 type activated macrophages into the arterial wall were markedly elevated in the α- Conotoxin MII-treated ApoE -/- mice. Conclusion The α3-nAChR may play a pivotal role in regulating the atherogenesis through influencing the inflammatory responses of ECs, macrophages and adipocytes. The mecha- nisms involve the regulations of multiple cell signaling pathways.展开更多
Dwarfing is useful to reduce plant height,when breeding high-yielding and non-lodging crops.In this study,a set of natural storage protein subunit-null dwarf mutants of soybean was reported that showed strongly reduce...Dwarfing is useful to reduce plant height,when breeding high-yielding and non-lodging crops.In this study,a set of natural storage protein subunit-null dwarf mutants of soybean was reported that showed strongly reduced plant stature and deficiency in various 7S and 11S subunits,designated as snd1 mutants.Under normal growth conditions,the snd1 mutants showed a severe dwarf phenotype,with plant height of about 25 cm.Compared with wild-type DN47,the mutant snd1 exhibited no obvious morphological differences at the early stage of development.All the snd1 mutants examined had fewer nodes and shorter than normal internodes;the leaves were similar in shape to normal parents,but were dark-green at the mature stage.The flower size was similar to DN47;however,the flowering period was shorter than in the wild-type.Significant variation was noted for protein content,oil content of the seeds and size of seeds(weight of 100 seeds)among 17 snd1 dwarf lines.Genetic analysis indicated that the dwarfism of snd1 was controlled by a single recessive gene.The snd1 dwarf mutant had markedly different dynamic levels of the endogenous hormones gibberellin(GA),brassinosteroid,indole-3-acetic acid and abscisic acid,at the seedling stage.Exogenous GA3 treatment led to recovery of the plant height phenotype of the snd1 mutant;GA3 at 0.1 mm had the largest effect on enhancing plant height.Using molecular markers,snd1 gene was approximately mapped in an interval of 603 kb between markers Satt166 and Satt561 on chromosome 19.Snd1 mutant provided valuable material for hypoallergenic soybean breeding and the snd1 gene might be a novel gene related to plant height in soybean.展开更多
文摘A predicted tau glutathione S-transferase(GST) subunit encoding gene,named GhGST,was isolated from Gossypium hirsutum with RACE method from SSH library based on Verticillium
文摘Aim The expression of α3 subunit of nicotinic acetylcholine receptor (α3-nAChR) has been demonstra- ted in aorta, adipocyte and macrophage. The objective of the present study was to verify the regulatory roles of α3- nAChR in the inflammatory responses of atherosclerosis. Methods The inflammatory indicators were detected in mouse macrophage, adipocytes and mouse aortic endothelial cells (MAECs) after the α3-nAChR was antagonized or after the α3-nAChR gene was silenced. Meanwhile, atherogenesis was induced in the apolipoprotein E knock-out ( ApoE^ -/- ) mice after fed with an atherogenic high-fat diet for 7 weeks. Results In MAECs, the lipopolysaccha- ride (LPS)-stimulated secretions of the adhesion molecules and inflammatory cytokines were significantly enhanced (30%± 80% ) after pretreatment with α-Conotoxin MII (an antagonist for α3-nAChR) or after knock-down with α3-nAChR gene. In adipocytes, the knock-down of α3 gene promoted the generations of the proin? ammatory adi- pokines or cytokines but decreased the production of adiponectin, an anti-inflammatory adipokine, by 29.29 ± 9.43%. In macrophage silenced with α3-nAChR gene, the M1 (classical) activation was predominantly stimula- ted, whereas the M2 (alternative) activation was suppressed. In addition, the amount of the atherosclerotic lesions and the infiltration of the M1 type activated macrophages into the arterial wall were markedly elevated in the α- Conotoxin MII-treated ApoE -/- mice. Conclusion The α3-nAChR may play a pivotal role in regulating the atherogenesis through influencing the inflammatory responses of ECs, macrophages and adipocytes. The mecha- nisms involve the regulations of multiple cell signaling pathways.
基金Supported by the Ministry of Science and Technology of China(2016YFD0100500)Funding from Harbin Science and Technology Bureau(2016RQYXJ018,2017RAQXJ104)+4 种基金the Key Laboratory of Soybean Biology in the Chinese Ministry of Education,Northeast Agricultural University(SB17A01)National Natural Science Foundation of China(31801386)Heilongjiang Natural Science Foundation(LC2018008)Heilongjiang General Young Innovative Talents Training Plan(UNPYSCT-2018158)Certificate of China Postdoctoral Science Foundation Grant(2018M641839)
文摘Dwarfing is useful to reduce plant height,when breeding high-yielding and non-lodging crops.In this study,a set of natural storage protein subunit-null dwarf mutants of soybean was reported that showed strongly reduced plant stature and deficiency in various 7S and 11S subunits,designated as snd1 mutants.Under normal growth conditions,the snd1 mutants showed a severe dwarf phenotype,with plant height of about 25 cm.Compared with wild-type DN47,the mutant snd1 exhibited no obvious morphological differences at the early stage of development.All the snd1 mutants examined had fewer nodes and shorter than normal internodes;the leaves were similar in shape to normal parents,but were dark-green at the mature stage.The flower size was similar to DN47;however,the flowering period was shorter than in the wild-type.Significant variation was noted for protein content,oil content of the seeds and size of seeds(weight of 100 seeds)among 17 snd1 dwarf lines.Genetic analysis indicated that the dwarfism of snd1 was controlled by a single recessive gene.The snd1 dwarf mutant had markedly different dynamic levels of the endogenous hormones gibberellin(GA),brassinosteroid,indole-3-acetic acid and abscisic acid,at the seedling stage.Exogenous GA3 treatment led to recovery of the plant height phenotype of the snd1 mutant;GA3 at 0.1 mm had the largest effect on enhancing plant height.Using molecular markers,snd1 gene was approximately mapped in an interval of 603 kb between markers Satt166 and Satt561 on chromosome 19.Snd1 mutant provided valuable material for hypoallergenic soybean breeding and the snd1 gene might be a novel gene related to plant height in soybean.