期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结构损伤的小波分形神经网络检测
被引量:
3
1
作者
王步宇
《应用力学学报》
EI
CAS
CSCD
北大核心
2007年第1期58-61,共4页
用神经网络进行结构损伤检测、分析的有效性在很大程度上取决于训练样本的好坏。小波变换在时域和频域都具有表征信号局部特征的能力,小波包分析利用可以伸缩和平移的可变视窗能够聚焦到信号的任意细节,因此对有损伤的结构的非线性动力...
用神经网络进行结构损伤检测、分析的有效性在很大程度上取决于训练样本的好坏。小波变换在时域和频域都具有表征信号局部特征的能力,小波包分析利用可以伸缩和平移的可变视窗能够聚焦到信号的任意细节,因此对有损伤的结构的非线性动力特性能进行有效的分析。利用分形几何方法不依赖于系统的数学模型的特点,将分形维数与小波分析相结合,建立了结构损伤的小波分形神经网络检测方法。研究结果表明,结构不同状态下的振动信号的各频段分形维数有明显的不同,可以将振动信号的各频段分形维数作为结构损伤检测的特征量,并用神经网络将结构的不同状态模式识别出来。
展开更多
关键词
结构
损伤检测
小波变换
分形维数
神经网络
在线阅读
下载PDF
职称材料
基于小波分析的结构损伤检测
被引量:
3
2
作者
王步宇
《噪声与振动控制》
CSCD
北大核心
2006年第6期43-45,共3页
损伤结构的动力特性具有局部时变的特征,小波变换在时域和频域都具有表征信号局部特征的能力,小波包分析利用可以伸缩和平移的可变视窗能够聚焦到信号的任意细节,因此可以对损伤结构的非线性动力特性能进行有效的分析。提出运用小波分...
损伤结构的动力特性具有局部时变的特征,小波变换在时域和频域都具有表征信号局部特征的能力,小波包分析利用可以伸缩和平移的可变视窗能够聚焦到信号的任意细节,因此可以对损伤结构的非线性动力特性能进行有效的分析。提出运用小波分析提取结构损伤特征向量的方法和基本原理,并进一步用神经网络进行损伤位置和程度的检测。文章通过一个两层框架的模型对小波神经网络和传统的BP网络的损伤识别精度作了对比。研究表明,小波神经网络的抗噪声能力较强,损伤识别的效果更好,运用小波神经网络进行结构损伤识别精度要优于传统的BP网络。
展开更多
关键词
振动与波
小波变换
损伤检测
小波神经网络
结构
在线阅读
下载PDF
职称材料
题名
结构损伤的小波分形神经网络检测
被引量:
3
1
作者
王步宇
机构
浙江大学
出处
《应用力学学报》
EI
CAS
CSCD
北大核心
2007年第1期58-61,共4页
基金
国家自然科学基金项目(60275004)
文摘
用神经网络进行结构损伤检测、分析的有效性在很大程度上取决于训练样本的好坏。小波变换在时域和频域都具有表征信号局部特征的能力,小波包分析利用可以伸缩和平移的可变视窗能够聚焦到信号的任意细节,因此对有损伤的结构的非线性动力特性能进行有效的分析。利用分形几何方法不依赖于系统的数学模型的特点,将分形维数与小波分析相结合,建立了结构损伤的小波分形神经网络检测方法。研究结果表明,结构不同状态下的振动信号的各频段分形维数有明显的不同,可以将振动信号的各频段分形维数作为结构损伤检测的特征量,并用神经网络将结构的不同状态模式识别出来。
关键词
结构
损伤检测
小波变换
分形维数
神经网络
Keywords
structural
,
damage detection
,
wavelet transform
,
fractal dimensions
,
neural network.
分类号
TU312.3 [建筑科学—结构工程]
在线阅读
下载PDF
职称材料
题名
基于小波分析的结构损伤检测
被引量:
3
2
作者
王步宇
机构
浙江大学建工学院
出处
《噪声与振动控制》
CSCD
北大核心
2006年第6期43-45,共3页
基金
国家自然科学基金项目(编号:60275004)
文摘
损伤结构的动力特性具有局部时变的特征,小波变换在时域和频域都具有表征信号局部特征的能力,小波包分析利用可以伸缩和平移的可变视窗能够聚焦到信号的任意细节,因此可以对损伤结构的非线性动力特性能进行有效的分析。提出运用小波分析提取结构损伤特征向量的方法和基本原理,并进一步用神经网络进行损伤位置和程度的检测。文章通过一个两层框架的模型对小波神经网络和传统的BP网络的损伤识别精度作了对比。研究表明,小波神经网络的抗噪声能力较强,损伤识别的效果更好,运用小波神经网络进行结构损伤识别精度要优于传统的BP网络。
关键词
振动与波
小波变换
损伤检测
小波神经网络
结构
Keywords
vibration and wave
wavelet transform
damage detection
wavelet
neural
network
structure
分类号
TU312.3 [建筑科学—结构工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结构损伤的小波分形神经网络检测
王步宇
《应用力学学报》
EI
CAS
CSCD
北大核心
2007
3
在线阅读
下载PDF
职称材料
2
基于小波分析的结构损伤检测
王步宇
《噪声与振动控制》
CSCD
北大核心
2006
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部