期刊文献+

基于小波分析的结构损伤检测 被引量:3

Detection of Structural Damage using Wavelet Transform Technique
在线阅读 下载PDF
导出
摘要 损伤结构的动力特性具有局部时变的特征,小波变换在时域和频域都具有表征信号局部特征的能力,小波包分析利用可以伸缩和平移的可变视窗能够聚焦到信号的任意细节,因此可以对损伤结构的非线性动力特性能进行有效的分析。提出运用小波分析提取结构损伤特征向量的方法和基本原理,并进一步用神经网络进行损伤位置和程度的检测。文章通过一个两层框架的模型对小波神经网络和传统的BP网络的损伤识别精度作了对比。研究表明,小波神经网络的抗噪声能力较强,损伤识别的效果更好,运用小波神经网络进行结构损伤识别精度要优于传统的BP网络。 Dynamical characteristic of the damage structure is local time - variant. Wavelet transform can signify the detail of signal in time region and frequency region. The wavelet packet technique can focus on each point of signal with alterable window. So it can make effectual analyse to nonlinear dynamical characteristic of the damage structural. The method of extracting damage is proposed in this paper, and using neural network for structure damag elgenvector e detection by wavelet transform It is compared with the traditional BP network in damage identification accuracy by a tow layers frame mode. The study indicates that it has advantages of the noiseproof ability and the effectiveness of damage identification. The identification accuracy of the wavelet neural network is better than the traditional BP network.
作者 王步宇
出处 《噪声与振动控制》 CSCD 北大核心 2006年第6期43-45,共3页 Noise and Vibration Control
基金 国家自然科学基金项目(编号:60275004)
关键词 振动与波 小波变换 损伤检测 小波神经网络 结构 vibration and wave wavelet transform damage detection wavelet neural network structure
作者简介 王步宇(1968-),男,河北省抚宁县人,硕士,工程师,主要从事工程结构的损伤检测和健康监测等。
  • 相关文献

参考文献7

  • 1Zubaydi A,Haddara M R,Swamidas A S J.On the use of the autocorrelation function to identify the damage in the side shell of a ship's hull[J].Marine Structures,2000(13):537-551.
  • 2Debra G,Hunter N,Farrar C R,et a1.Identifying damage sensitive features using nonlinear time-series and bispectral analysis[A].18th International Modal Analysis Conference[C].San Antonio:SPIE,2000.1796-1802.
  • 3Fugate M L,Hoon S,Farrar C R.Unsupervised learning methods for vibration-based damage detection[A].18th International Modal Analysis Conference[C].San Antonio:SPIE.2000.652-659.
  • 4Wu Z,Xu B.Yokoyama K.Decentralized parametric damage detection based on neural networks[J].Computer-Aided Civil and Infrastructure Engineering.2002.17:175-184.
  • 5K0 J M,NI Y Q,ZHOU X T.et a1.Structural damage alarming in Ting Kau Bridge using auto-associative neural networks[A].Advances in Structural Dynamics[C].Hong Kong:Elsevier Sience Ltd,2000,2:1021-1028.
  • 6瞿伟廉,陈伟,李秋胜.基于神经网络技术的复杂框架结构节点损伤的两步诊断法[J].土木工程学报,2003,36(5):37-45. 被引量:35
  • 7杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001..

二级参考文献8

  • 1陆秋海.基于应变模态理论的结构修改和损伤神经网络辨识法研究:博士学位论文[D].清华大学,1997.
  • 2Cawley P, Adams R D.The location of defects in structures from measurements of natural frequencies.Journal of Strain Analysis, 1979(14): 49-57.
  • 3Heam G, R.B.Testa.Modal Analysis for Damage Detection in Structures.Journal of Structural Engineering, 1991,117(10): 3042-3O63.
  • 4Specht D F. Probabilistic heural networks[J].Neural Networks,1990,1(3): 109-118.
  • 5Yun C. B., Yi J.H., Bahng E. Y.. Joint Damage Assessment of Framed Structures Using a Netwal Networks Technique [J]. Engineering Structures, Quarterly, 0141-0296, GB,2001, 01,23,5,425- 435.
  • 6Kim. H, Young. M, Bartkowicz. T. J.Two-step Structural Damage Detection Approach With Limited Instrumentation [J].1997, 119(2):258-264.
  • 7周先雁,沈蒲生.用应变模态对混凝土结构进行损伤识别的研究[J].湖南大学学报(自然科学版),1997,24(5):69-74. 被引量:52
  • 8李国强,郝坤超,陆烨.框架结构损伤识别的两步法[J].同济大学学报(自然科学版),1998,26(5):483-487. 被引量:17

共引文献146

同被引文献30

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部