The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pre...The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pressures(5,10 and 15 MPa)and numbers of impacts(1,5,10 and 15 impacts).Then,uniaxial compression tests were undertaken on the pre-damaged granite to study the evolution of stress thresholds using the crack volume strain method and acoustic emission method.The crack damage stresses determined by the two methods were compared.Additionally,based on the rise time amplitude and average frequency,the evolution law of microcracks inside rock specimens was revealed,and an improved acoustic emission method was proposed.The results indicated that as the number of impacts increased,the crack closure stress,crack damage stress,and peak stress of granite specimens initially rose and then declined,while they continuously increased with the confining pressure.The proportion of shear cracks first declined and then rose with greater number of impacts and decreased with higher confining pressure,and that of tensile cracks showed the opposite trend.The improved acoustic emission method was more accurate in identifying the crack damage stress.展开更多
This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor ...This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.展开更多
The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified ...The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.展开更多
【Objective】This study aimed to clarify the key pathways and related genes of taro leaves in response to drought stress,analyze the gene expression patterns under drought conditions,and explore the molecular response...【Objective】This study aimed to clarify the key pathways and related genes of taro leaves in response to drought stress,analyze the gene expression patterns under drought conditions,and explore the molecular response mecha‐nisms.The findings would provide theoretical references for understanding the molecular mechanisms of taro’s drought regulation and for breeding different drought tolerant taro varieties in the future.【Method】Using Lipu taro as the experi‐mental material,leaf samples were collected after consecutive 7 d of drought treatment as the treatment group,while leaf samples from plants watered daily served as the control group.Transcriptome sequencing was performed to identify dif‐ferentially expressed genes,which were then subjected to GO functional annotation and KEGG pathway enrichment analysis.【Result】Under drought stress,there were 1613 differentially expressed genes(DEGs),including 1043 upregulated and 570 down-regulated genes.GO functional annotation analysis revealed that the DEGs were categorized into three major functional groups:molecular function,cellular component,and biological process.In the molecular function category,DEGs were annotated to binding and catalytic activity.In the cellular component category,DEGs were anno‐tated to cellular anatomical entities and protein-containing complexes.In the biological process category,DEGs were an‐notated to cellular processes and metabolic processes.KEGG signaling pathway enrichment analysis showed that 85.00%of the DEGs were enriched in metabolic pathway.Among these,the DEGs were primarily enriched in the glutathione me‐tabolism pathway and the starch and sucrose metabolism pathway,with 11 and 19 DEGs identified in each pathway re‐spectively.Under drought stress,a total of 112 differentially expressed transcription factors(TFs)were identified,mainly including members of the bHLH,ERF,WRKY and NAC families.Among all differentially expressed TFs,82.14%showed up-regulated transcription levels under drought conditions.Plant hormone signal transduction,carotenoid biosynthesis,and the MAPK signaling pathway-plant were identified as key abscisic acid-responsive pathways involved in drought response,influencing stomatal closure in taro leaves and seed dormancy to cope with drought stress.The reliability of the transcriptome data was confirmed by quantitative real-time PCR analysis.【Conclusion】Under drought stress,the gene expression in the glutathione metabolism pathway,the starch and sucrose metabolism pathway,and transcription factors in taro leaves is affected.Most TFs are positively involved in regulating taro plant’s drought response.展开更多
Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were ra...Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were randomized equally into control group and heat stress group.After exposure to 32℃for 2 weeks in the latter group,the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry.In the cell experiments,cultured rat thoracic aortic endothelial cells(RTAECs)were incubated at 40℃for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA(si-Bmal1)or a negative sequence.In both rat thoracic aorta and RTAECs,the expressions of Bmal1,the cell cycle proteins CDK1,CDK4,CDK6,and cyclin B1,and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting.TUNEL staining was used to detect cell apoptosis in rat thoracic aorta,and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.Results Compared with the control rats,the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1,cyclin B1 and CDK1 in the thoracic aorta(P<0.05).In cultured RTAECs,heat stress caused significant increase of Bmal1,cyclin B1 and CDK1 protein expression levels,which were obviously lowered in cells with prior si-Bmal1 transfection.Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.Conclusion Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells,which can be partly alleviated by suppressing Bmal1 expression.展开更多
Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of ...Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of climate change on cotton production and the use of genomic approaches to increase stress tolerance in cotton.This paper discusses the effects of rising temperatures,changing precipitation patterns,and extreme weather events on cotton yield.It then explores various genomic strategies,such as genomic selection and marker-assisted selection,which can be used to develop stress-tolerant cotton varieties.The review emphasizes the need for interdisciplinary research efforts and policy interventions to mitigate the adverse effects of climate change on cotton production.Furthermore,this paper presents advanced prospects,including genomic selection,gene editing,multi-omics integration,highthroughput phenotyping,genomic data sharing,climate-informed breeding,and phenomics-assisted genomic selection,for enhancing stress resilience in cotton.Those innovative approaches can assist cotton researchers and breeders in developing highly resilient cotton varieties capable of withstanding the challenges posed by climate change,ensuring the sustainable and prosperous future of cotton production.展开更多
During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three...During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three-dimensional(3 D)vertical stress model,which ignores the effect of mine depth,failing to obtain the vertical stress at different positions along stope length.Therefore,this paper develops and validates an improved 3 D model solution through numerical simulation in Rhino-FLAC^(3D),and examines the stress state and stability of backfill under different conditions.The results show that the improved model can accurately calculate the vertical stress at different mine depths and positions along stope length.The error rates between the results of the improved model and numerical simulation are below 4%,indicating high reliability and applicability.The maximum vertical stress(σ_(zz,max))in backfill is positively correlated with the degree of rock-backfill closure,which is enhanced by mine depth and elastic modulus of backfill,while weakened by stope width and inclination,backfill friction angle,and elastic modulus of rock mass.Theσ_(zz,max)reaches its peak when the stope length is 150 m,whileσ_(zz,max)is insensitive to changes in rock-backfill interface parameters.In all cases,the backfill stability can be improved by reducingσ_(zz,max).The results provide theoretical guidance for the backfill strength design and the safe and efficient recovery of ore pillars in deep mining.展开更多
The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stres...The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them.展开更多
The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is c...The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavel...In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.展开更多
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti...Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering.展开更多
Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses ...Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.展开更多
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th...In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.展开更多
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u...A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.展开更多
Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative id...Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ...In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.展开更多
Objective Chronic stress can induce cognitive dysfunction,but the underlying mechanisms remain unknown.Studies have confirmed that the high mobility group box 1/Toll-like receptor 4(HMGB1/TLR4)pathway is closely assoc...Objective Chronic stress can induce cognitive dysfunction,but the underlying mechanisms remain unknown.Studies have confirmed that the high mobility group box 1/Toll-like receptor 4(HMGB1/TLR4)pathway is closely associated with cognitive impairment.Therefore,this research aimed to explore whether the HMGB1/TLR4 pathway involves in chronic stress-induced cognitive dysfunction.Methods The chronic unpredictable mild stress(CUMS)mouse model was established by randomly giving different types of stress every day for four consecutive weeks.Cognitive function was detected by novel object recognition test,Y-maze test,and Morris water maze test.The protein expressions of HMGB1,TLR4,B-cell lymphoma 2(BCL2),and BCL2 associated X(BAX)were determined by Western blot.The damage of neurons in the hippocampal CA1 region was observed by hematoxylin-eosin(HE)staining.Results The protein expressions of HMGB1 and TLR4 were significantly increased in the hippocampus of chronic stress mice.Furthermore,inhibition of the HMGB1/TLR4 pathway induced by ethyl pyruvate(EP,a specific inhibitor of HMGB1)and TAK242(a selective inhibitor of TLR4)treatment attenuated cognitive impairment in chronic stress mice,according to the novel object recognition test,Y-maze test,and Morris water maze test.In addition,administration of EP and TAK242 also mitigated the increase of apoptosis in the hippocampus of chronic stress mice.Conclusion These results indicate that the hippocampal HMGB1/TLR4 pathway contributes to chronic stress-induced apoptosis and cognitive dysfunction.展开更多
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
基金Project(2023YFC2907400)by the National Key Research and Development Program of China-2023 Key Special ProjectProject(51974043)supported by the National Natural Science Foundation of China+2 种基金Project(SKLCRKF1908)supported by the Open Fund of the State Key Laboratory of Coal Resources in Western China,Xi’an University of Science and Technology,ChinaProject(2023JJ10072)suupported by the Hunan Provincial Natural Science Foundation for Distinguished Young ScholarsProject(2022RC1173)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pressures(5,10 and 15 MPa)and numbers of impacts(1,5,10 and 15 impacts).Then,uniaxial compression tests were undertaken on the pre-damaged granite to study the evolution of stress thresholds using the crack volume strain method and acoustic emission method.The crack damage stresses determined by the two methods were compared.Additionally,based on the rise time amplitude and average frequency,the evolution law of microcracks inside rock specimens was revealed,and an improved acoustic emission method was proposed.The results indicated that as the number of impacts increased,the crack closure stress,crack damage stress,and peak stress of granite specimens initially rose and then declined,while they continuously increased with the confining pressure.The proportion of shear cracks first declined and then rose with greater number of impacts and decreased with higher confining pressure,and that of tensile cracks showed the opposite trend.The improved acoustic emission method was more accurate in identifying the crack damage stress.
基金Project(52278380)supported by the National Natural Science Foundation of ChinaProject(2023JJ30670)supported by the National Science Foundation of and Technology Major Project of Hunan Province,China。
文摘This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+2 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(Leading Fund(2023)09)supported by the Natural Science Research Fund of Guizhou University,ChinaProject(JYBSYS2021101)supported by the Open Fund of Key Laboratory of Safe and Effective Coal Mining,Ministry of Education,China。
文摘The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.
基金National Natural Science Foundation of China(32460756)Guangxi Key Research and Development Project(Guike AB20297041)+1 种基金Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences(Gui‐nongke 2022JM58)Guangxi Lipu Taro Experimental Station Projec(tTS202113)。
文摘【Objective】This study aimed to clarify the key pathways and related genes of taro leaves in response to drought stress,analyze the gene expression patterns under drought conditions,and explore the molecular response mecha‐nisms.The findings would provide theoretical references for understanding the molecular mechanisms of taro’s drought regulation and for breeding different drought tolerant taro varieties in the future.【Method】Using Lipu taro as the experi‐mental material,leaf samples were collected after consecutive 7 d of drought treatment as the treatment group,while leaf samples from plants watered daily served as the control group.Transcriptome sequencing was performed to identify dif‐ferentially expressed genes,which were then subjected to GO functional annotation and KEGG pathway enrichment analysis.【Result】Under drought stress,there were 1613 differentially expressed genes(DEGs),including 1043 upregulated and 570 down-regulated genes.GO functional annotation analysis revealed that the DEGs were categorized into three major functional groups:molecular function,cellular component,and biological process.In the molecular function category,DEGs were annotated to binding and catalytic activity.In the cellular component category,DEGs were anno‐tated to cellular anatomical entities and protein-containing complexes.In the biological process category,DEGs were an‐notated to cellular processes and metabolic processes.KEGG signaling pathway enrichment analysis showed that 85.00%of the DEGs were enriched in metabolic pathway.Among these,the DEGs were primarily enriched in the glutathione me‐tabolism pathway and the starch and sucrose metabolism pathway,with 11 and 19 DEGs identified in each pathway re‐spectively.Under drought stress,a total of 112 differentially expressed transcription factors(TFs)were identified,mainly including members of the bHLH,ERF,WRKY and NAC families.Among all differentially expressed TFs,82.14%showed up-regulated transcription levels under drought conditions.Plant hormone signal transduction,carotenoid biosynthesis,and the MAPK signaling pathway-plant were identified as key abscisic acid-responsive pathways involved in drought response,influencing stomatal closure in taro leaves and seed dormancy to cope with drought stress.The reliability of the transcriptome data was confirmed by quantitative real-time PCR analysis.【Conclusion】Under drought stress,the gene expression in the glutathione metabolism pathway,the starch and sucrose metabolism pathway,and transcription factors in taro leaves is affected.Most TFs are positively involved in regulating taro plant’s drought response.
文摘Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were randomized equally into control group and heat stress group.After exposure to 32℃for 2 weeks in the latter group,the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry.In the cell experiments,cultured rat thoracic aortic endothelial cells(RTAECs)were incubated at 40℃for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA(si-Bmal1)or a negative sequence.In both rat thoracic aorta and RTAECs,the expressions of Bmal1,the cell cycle proteins CDK1,CDK4,CDK6,and cyclin B1,and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting.TUNEL staining was used to detect cell apoptosis in rat thoracic aorta,and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.Results Compared with the control rats,the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1,cyclin B1 and CDK1 in the thoracic aorta(P<0.05).In cultured RTAECs,heat stress caused significant increase of Bmal1,cyclin B1 and CDK1 protein expression levels,which were obviously lowered in cells with prior si-Bmal1 transfection.Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.Conclusion Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells,which can be partly alleviated by suppressing Bmal1 expression.
基金supported by major national R&D projects(No.2023ZD04040-01)National Natural Science Foundation of China(No.5201101621)National Key R&D Plan(No.2022YFD1200304).
文摘Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of climate change on cotton production and the use of genomic approaches to increase stress tolerance in cotton.This paper discusses the effects of rising temperatures,changing precipitation patterns,and extreme weather events on cotton yield.It then explores various genomic strategies,such as genomic selection and marker-assisted selection,which can be used to develop stress-tolerant cotton varieties.The review emphasizes the need for interdisciplinary research efforts and policy interventions to mitigate the adverse effects of climate change on cotton production.Furthermore,this paper presents advanced prospects,including genomic selection,gene editing,multi-omics integration,highthroughput phenotyping,genomic data sharing,climate-informed breeding,and phenomics-assisted genomic selection,for enhancing stress resilience in cotton.Those innovative approaches can assist cotton researchers and breeders in developing highly resilient cotton varieties capable of withstanding the challenges posed by climate change,ensuring the sustainable and prosperous future of cotton production.
基金Project(2024ZD1003704)supported by the Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project,ChinaProjects(51834001,52130404)supported by the National Natural Science Foundation of China。
文摘During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three-dimensional(3 D)vertical stress model,which ignores the effect of mine depth,failing to obtain the vertical stress at different positions along stope length.Therefore,this paper develops and validates an improved 3 D model solution through numerical simulation in Rhino-FLAC^(3D),and examines the stress state and stability of backfill under different conditions.The results show that the improved model can accurately calculate the vertical stress at different mine depths and positions along stope length.The error rates between the results of the improved model and numerical simulation are below 4%,indicating high reliability and applicability.The maximum vertical stress(σ_(zz,max))in backfill is positively correlated with the degree of rock-backfill closure,which is enhanced by mine depth and elastic modulus of backfill,while weakened by stope width and inclination,backfill friction angle,and elastic modulus of rock mass.Theσ_(zz,max)reaches its peak when the stope length is 150 m,whileσ_(zz,max)is insensitive to changes in rock-backfill interface parameters.In all cases,the backfill stability can be improved by reducingσ_(zz,max).The results provide theoretical guidance for the backfill strength design and the safe and efficient recovery of ore pillars in deep mining.
基金Project(2023YFB3710503) supported by the National Key R&D Program of ChinaProject(52305439) supported by the National Natural Science Foundation of China。
文摘The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them.
基金Projects(42307192,41831278)supported by the National Natural Science Foundation of ChinaProject(CKWV20231175/KY)supported by the CRSRI Open Research Program,China。
文摘The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Project(12072376)supported by the National Natural Science Foundation of ChinaPoject(10533220215858)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.
基金supported by the National Natural Science Foundation of China (Grant No.52178515)。
文摘Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering.
基金Project(2022NSFSC0279)supported by the General Project of Sichuan Natural Science Foundation,ChinaProject(Z17113)supported by the Key Scientific Research Fund of Xihua University,ChinaProject(SR21A04)supported by the Research Center for Social Development and Social Risk Control of Sichuan Province,Key Research Base of Philosophy and Social Sciences,Sichuan University,China。
文摘Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.
基金Youth Talent Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKZ0270)Youth Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKQZ2021055).
文摘In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.
文摘A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.
基金Projects(2021RC3007,2020RC3090)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(52374150,52174099)supported by the National Natural Science Foundation of China。
文摘Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金Project(2021GK1040)supported by the Major Projects of Scientific and Technology Innovation of Hunan Province,ChinaProject(52375398)supported by the National Natural Science Foundation of China。
文摘In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.
文摘Objective Chronic stress can induce cognitive dysfunction,but the underlying mechanisms remain unknown.Studies have confirmed that the high mobility group box 1/Toll-like receptor 4(HMGB1/TLR4)pathway is closely associated with cognitive impairment.Therefore,this research aimed to explore whether the HMGB1/TLR4 pathway involves in chronic stress-induced cognitive dysfunction.Methods The chronic unpredictable mild stress(CUMS)mouse model was established by randomly giving different types of stress every day for four consecutive weeks.Cognitive function was detected by novel object recognition test,Y-maze test,and Morris water maze test.The protein expressions of HMGB1,TLR4,B-cell lymphoma 2(BCL2),and BCL2 associated X(BAX)were determined by Western blot.The damage of neurons in the hippocampal CA1 region was observed by hematoxylin-eosin(HE)staining.Results The protein expressions of HMGB1 and TLR4 were significantly increased in the hippocampus of chronic stress mice.Furthermore,inhibition of the HMGB1/TLR4 pathway induced by ethyl pyruvate(EP,a specific inhibitor of HMGB1)and TAK242(a selective inhibitor of TLR4)treatment attenuated cognitive impairment in chronic stress mice,according to the novel object recognition test,Y-maze test,and Morris water maze test.In addition,administration of EP and TAK242 also mitigated the increase of apoptosis in the hippocampus of chronic stress mice.Conclusion These results indicate that the hippocampal HMGB1/TLR4 pathway contributes to chronic stress-induced apoptosis and cognitive dysfunction.
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.