The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test...The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction.展开更多
Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F...Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.展开更多
The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institu...The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institute of Hydrology (BIG),with a focus on incipient motion,transport velocity and the depth of mixing into the riverbed. The results of the experiments show that the transport velocity of angular graim is lower and the critical shear stress for incipient motion is slightly higher than of well-ro...展开更多
The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the ox...The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP ), the velocity ratio of fuel to oxidizer (R V ), the thickness (WO ), and the recess (HO ) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH ) and the oxygen-rich gas (TO ), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2 /GO2 ), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC ), the average temperatures of the combustor wall (TW ), and the faceplate (TF ) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2 /GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case.展开更多
基金supported by the National Natural Science Foundation of China(No.51804309)the Yue Qi Young Scholar Project(2019QN02)+5 种基金Distinguished Scholar Project(2017JCB02)from China University of Mining and Technology-Beijing,Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.SHJT-17-42.10)National Natural Science Foundation of China(No.U1910206)the fund of Beijing Outstanding Young Scientist Program(BJJWZYJH01201911413037)the State Key Laboratory of Coal Resources and Safe Mining(Nos.SKLCRSM16KFB07,SKLCRSM16DCB01 and SKLCRSM17DC11)Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)the key project of Key Laboratory of Coal Mine Safety and High Efficiency Mining Co-established by the Province and the Ministry(Anhui University of Science and Technology)(No.JYBSYS2018201).
文摘The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction.
基金supported by the National Natural Science Foundation of China(Nos.51879184 and 12172253).
文摘Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.
文摘The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institute of Hydrology (BIG),with a focus on incipient motion,transport velocity and the depth of mixing into the riverbed. The results of the experiments show that the transport velocity of angular graim is lower and the critical shear stress for incipient motion is slightly higher than of well-ro...
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009702504)
文摘The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP ), the velocity ratio of fuel to oxidizer (R V ), the thickness (WO ), and the recess (HO ) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH ) and the oxygen-rich gas (TO ), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2 /GO2 ), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC ), the average temperatures of the combustor wall (TW ), and the faceplate (TF ) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2 /GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case.