期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
基于stacking融合机制的自动驾驶伦理决策模型 被引量:1
1
作者 刘国满 盛敬 罗玉峰 《计算机应用研究》 北大核心 2025年第2期462-468,共7页
虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽... 虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽车在伦理困境下能够作出合理决策。针对以上问题,设计了基于stacking融合机制的伦理决策模型,对机器学习和深度学习进行深度融合。一方面将基于特征依赖关系的朴素贝叶斯模型(ACNB)、加权平均一阶贝叶斯模型(WADOE)和自适应模糊模型(AFD)作为stacking融合机制上基学习器。依据先前准确率,设定各自模型权重,再运用加权平均法,计算决策结果。然后将该决策结果作为元学习器训练集,对元学习器进行训练,构建stacking融合模型。最后,运用验证集分别对深度学习模型和stacking融合模型进行验证,依据验证中平均损失率和准确率以及测试中正确率,评价和比较深度学习模型和stacking融合机制决策效果。结果表明,深度学习模型平均损失率最小为0.64,最大平均准确率为0.7,最高正确率为0.61。stacking融合机制平均损失率最小为0.35,最大平均准确率为0.90,最高正确率为0.75,说明stacking融合机制相对于深度学习模型,决策结果准确率和正确率方面有了较大改进。 展开更多
关键词 自动驾驶汽车 伦理决策 stacking融合机制 深度学习
在线阅读 下载PDF
基于Stacking多模型融合的颗粒饲料质量预测方法
2
作者 吴俊华 王粮局 +4 位作者 徐际童 邹方磊 王威 郭绍永 王红英 《农业工程学报》 北大核心 2025年第15期318-326,共9页
针对颗粒饲料产品质量受饲料配方、工艺参数、设备参数以及环境参数等多重因素影响,导致颗粒饲料质量管控困难的问题,该研究提出一种基于Stacking多模型融合的颗粒饲料质量预测方法。以实际生产线上采集的数据为基础,采用随机森林算法... 针对颗粒饲料产品质量受饲料配方、工艺参数、设备参数以及环境参数等多重因素影响,导致颗粒饲料质量管控困难的问题,该研究提出一种基于Stacking多模型融合的颗粒饲料质量预测方法。以实际生产线上采集的数据为基础,采用随机森林算法和最大互信息系数进行特征筛选,构建融合多个机器学习算法的Stacking预测模型。结果表明,Stacking多模型融合算法优于单一机器学习算法,预测的颗粒硬度、颗粒耐久性指数(pellet durability index,PDI)及生产率在测试集上的均方根误差分别是2.932 N、4.830%、0.465 t/h,较各自的最优单一模型分别降低了8.26%、5.48%和10.20%;进一步采用随机森林算法量化特征贡献度发现,颗粒硬度和PDI主要受饲料配方因素主导,累计贡献率分别为87.01%和88.94%;生产率主要由喂料频率决定,贡献率为42.94%。该研究为颗粒饲料质量的精准管控提供了一种新的技术方法,为提高饲料生产设备智能化水平、精细化技术水平提供了一定的理论依据。 展开更多
关键词 饲料 预测模型 特征选择 stacking多模型融合 颗粒质量
在线阅读 下载PDF
基于Stacking集成的籽棉回潮率信息融合检测方法研究
3
作者 钱一夫 黄杰 +2 位作者 方亮 段宏伟 张梦芸 《农业机械学报》 北大核心 2025年第5期159-166,共8页
针对棉花采收和收购环节中籽棉回潮率检测工序复杂、受人工影响因素较大、检测精度低的问题,提出了一种基于电阻技术的信息融合检测方法。分别采集了环境温湿度以及籽棉电阻、密度与回潮率,分析了籽棉回潮率随环境温湿度变化规律,讨论... 针对棉花采收和收购环节中籽棉回潮率检测工序复杂、受人工影响因素较大、检测精度低的问题,提出了一种基于电阻技术的信息融合检测方法。分别采集了环境温湿度以及籽棉电阻、密度与回潮率,分析了籽棉回潮率随环境温湿度变化规律,讨论了籽棉密度对籽棉电阻检测的影响,确定了籽棉电阻与回潮率的关系。为了提高籽棉回潮率检测的精确性和稳定性,融合环境温湿度及籽棉电阻和密度作为特征变量,将“环境参数-物理特性-电学特性”进行数据关联;建立多元线性回归、支持向量回归、随机森林等5类回归模型,采用“模型竞争-集成优化”策略建立堆叠集成融合模型预测回潮率,实现了数据级和决策级的信息融合。结果表明,基于信息融合的堆叠集成模型为最优回潮率预测模型,在测试数据集上其决定系数R^(2)为0.994,平均绝对误差(MAE)为0.104%,均方根误差(RMSE)为0.151%,验证了信息融合检测方法的可靠性。该方法可为棉花采收打包和收购环节的回潮率检测提供数据支撑。 展开更多
关键词 籽棉回潮率 信息融合 堆叠集成融合模型 电阻检测 回归预测模型
在线阅读 下载PDF
近红外光谱结合Stacking集成学习的猕猴桃糖度检测研究 被引量:2
4
作者 郭志强 张博涛 曾云流 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2932-2940,共9页
利用近红外光谱技术Stacking集成学习对猕猴桃糖度的无损检测。以湖北“云海一号”猕猴桃为研究对象,采用红外分析仪获取了280个样本的光谱数据,包含了4000~10000cm^(-1)范围内的1557个波长数据,使用折射仪测量糖度值。通过蒙特卡洛随... 利用近红外光谱技术Stacking集成学习对猕猴桃糖度的无损检测。以湖北“云海一号”猕猴桃为研究对象,采用红外分析仪获取了280个样本的光谱数据,包含了4000~10000cm^(-1)范围内的1557个波长数据,使用折射仪测量糖度值。通过蒙特卡洛随机采样结合T检验的奇异样本识别算法筛除异常值样本。利用SPXY算法按照4∶1的比例划分训练集和测试集。使用多元散射校正(MSC)、SG平滑滤波(SG)、趋势校正(DT)、矢量归一化(VN)、标准正态变换(SNV)五种方法对数据进行预处理。使用无信息变量消除法(UVE)、竞争性自适应重加权算法(CARS)和区间变量迭代空间收缩特征选择算法(iVISSA)提取特征波长,使用连续投影算法(SPA)进行二次提取,消除共线性变量。由于单一模型的泛化能力有限,为了扩大建模能力,设计了一种基于Stacking算法的集成学习模型。选择贝叶斯岭回归(BRR)、偏最小二乘回归(PLSR)、支持向量机回归(SVR)以及人工神经网络(ANN)作为基学习器,线性回归(LR)作为元学习器建立集成模型,比较不同组合下集成模型的性能。使用Pearson相关系数分析基学习器与集成模型之间的关系。结果表明:在五种预处理方法之中,矢量归一化的效果最佳。对预处理后的光谱进行特征波长提取,结果显示VN-CARS-PLSR模型效果最好,在测试集上的RP2为0.805,RMSEP为0.498。模型提取了177个特征波长,数据量相比于原始光谱减少了88.6%。通过Stacking算法对基学习器进行融合,对比不同的组合方式,发现PLS+SVR+ANN集成模型预测精度最高,RP2达到了0.853,RMSEP下降至0.433。通过Pearson相关系数分析了基学习器对集成模型性能的影响。研究表明,与单一模型相比,Stacking集成模型能够进行更加全面的建模,具有更高的泛化能力,该方法为猕猴桃糖度品质的无损检测提供了技术支持。 展开更多
关键词 猕猴桃 近红外光谱 糖度 stacking集成学习 模型融合
在线阅读 下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型 被引量:3
5
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 stacking融合
在线阅读 下载PDF
基于Stacking融合模型的PHEV复合储能系统实时能量分配策略 被引量:1
6
作者 吴忠强 马博岩 《计量学报》 CSCD 北大核心 2024年第1期73-81,共9页
为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进... 为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进行训练,并综合GRU网络以及XGBoost算法,提出了一种Stacking集成学习框架下多模型融合的能量分配策略。仿真结果表明,与仅使用单一电池的储能系统相比,基于Stacking融合模型的实时能量分配系统在UDDS和US06两种循环工况下,电池峰值电流分别降低了48.7%和50.8%,有效削弱了电池的峰值电流,提升了电池的整体性能。 展开更多
关键词 电学计量 复合储能系统 插电式混合动力汽车 动态规划 XGBoost stacking融合模型
在线阅读 下载PDF
基于Stacking集成学习的分频地震属性融合储层预测方法 被引量:9
7
作者 刘磊 李伟 +3 位作者 杜玉山 岳大力 张雪婷 侯加根 《石油地球物理勘探》 EI CSCD 北大核心 2024年第1期12-22,共11页
地震属性蕴含大量储层信息,融合多种地震属性可提高储层预测精度。由于地下地质结构复杂、非均质性强,依据单一的地震属性融合方法难以精细刻画储层特征。为此,提出了一种基于Stacking集成学习的分频地震属性融合储层预测方法。该方法... 地震属性蕴含大量储层信息,融合多种地震属性可提高储层预测精度。由于地下地质结构复杂、非均质性强,依据单一的地震属性融合方法难以精细刻画储层特征。为此,提出了一种基于Stacking集成学习的分频地震属性融合储层预测方法。该方法主要包括3个部分:①根据不同厚度储层的振幅与频率关系,利用多个频率的地震信息,降低地震属性的多解性;②联合相关性分析和无监督聚类技术优选地震属性,剔除冗余属性特征;③利用能够综合多个差异化模型优势的Stacking集成学习模型,融合不同频段的地震属性,提高地震属性的解释精度。将该方法用于渤海湾盆地埕岛油田,并使用线性公式定量分析法进一步评估Stacking模型的泛化效果。结果显示:与单类预测模型相比,Stacking模型的综合预测性能和可靠性均有显著提升;对应的地震属性融合结果高值区形态更加清晰,融合属性与砂体厚度的相关系数可达到0.92,这表明该方法具有良好的应用前景。 展开更多
关键词 地震属性 储层预测 stacking 集成学习 分频 智能融合
在线阅读 下载PDF
基于空间相关性与Stacking集成学习的风电功率预测方法 被引量:7
8
作者 王小明 徐斌 +3 位作者 尹元亚 潘文虎 吴红斌 韩屹 《电力工程技术》 北大核心 2024年第5期224-232,共9页
针对目标气象预报数据缺失导致风电预测精度不足的问题,提出一种基于空间相关性和Stacking集成学习的风电功率预测方法。首先,分析目标风电场与相邻气象站点之间的空间相关性,根据相关系数极值点确定延迟时间,构建风速时移数据集;其次,... 针对目标气象预报数据缺失导致风电预测精度不足的问题,提出一种基于空间相关性和Stacking集成学习的风电功率预测方法。首先,分析目标风电场与相邻气象站点之间的空间相关性,根据相关系数极值点确定延迟时间,构建风速时移数据集;其次,利用Stacking集成方法融合多元算法,从多个数据观测角度预测目标风电场的风电功率,实现不同算法的优势互补,提升整体泛化能力,并采用粒子群优化算法搜索模型超参数,较好地平衡搜索时间与模型效果;最后,采用华东地区某风电场的实测数据验证了文中所提方法的有效性和准确性。结果表明,通过考虑不同位置的信息偏差,从数据输入和预测模型两方面可有效提高数据缺失情况下的风电预测精度。 展开更多
关键词 风电功率预测 空间相关性 stacking集成学习 风速时移 多元算法融合 粒子群优化
在线阅读 下载PDF
基于Stacking模型融合的深基坑地面沉降预测 被引量:26
9
作者 秦胜伍 张延庆 +4 位作者 张领帅 苗强 程秋实 苏刚 孙镜博 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2021年第5期1316-1323,共8页
为了提高机器学习对深基坑地面沉降的预测能力,本文提出了一种基于Stacking集成学习方式的多模型融合的地面沉降预测方法,并以深圳某深基坑为例,采用斯皮尔曼相关性系数对基坑地面沉降的影响因子进行筛选;运用筛选后的8个影响因子建立St... 为了提高机器学习对深基坑地面沉降的预测能力,本文提出了一种基于Stacking集成学习方式的多模型融合的地面沉降预测方法,并以深圳某深基坑为例,采用斯皮尔曼相关性系数对基坑地面沉降的影响因子进行筛选;运用筛选后的8个影响因子建立Stacking深基坑地面沉降预测模型,以验证该方法的适用性。结果表明:Stacking预测模型的平均绝对误差为0.34、平均绝对误差百分比为2.22%,均方根误差为0.13,相较于传统基模型(随机森林、支持向量机和人工神经网络),Stacking预测模型的平均绝对误差、平均绝对误差百分比和均方根误差值皆为最小。 展开更多
关键词 基坑施工 地表沉降 stacking模型融合 影响因子筛选
在线阅读 下载PDF
基于Stacking模型融合的专变用户电费回收风险识别方法 被引量:9
10
作者 潘国兵 龚明波 +4 位作者 贺民 邬程欢 唐小淇 杨吕 欧阳静 《电力自动化设备》 EI CSCD 北大核心 2021年第1期152-158,共7页
针对当前电力公司面临的专变用户电费回收风险,提出一种基于Stacking模型融合的专变用户电费回收风险识别方法。对专变用户数据进行特征处理、特征构造与特征筛选,从样本分布和特征属性上优化模型的泛化性能;利用Stacking模型融合多个... 针对当前电力公司面临的专变用户电费回收风险,提出一种基于Stacking模型融合的专变用户电费回收风险识别方法。对专变用户数据进行特征处理、特征构造与特征筛选,从样本分布和特征属性上优化模型的泛化性能;利用Stacking模型融合多个基学习器,构建专变用户电费回收风险识别模型。实验结果表明,相较于其他常用的分类算法,所提方法具有更优的精确率、召回率、P-R调和均值、AUC值以及模型泛化性能,对专变风险用户的识别率也更高。 展开更多
关键词 专变用户 电费回收 风险识别 stacking模型融合 LGBM
在线阅读 下载PDF
基于Stacking与多特征融合的加密恶意流量检测 被引量:12
11
作者 霍跃华 赵法起 《计算机工程》 CAS CSCD 北大核心 2023年第5期165-172,180,共9页
加密技术保护网络通信安全的同时,大量恶意软件也采用加密协议来隐藏其恶意行为。在现有基于机器学习的TLS加密恶意流量检测模型中,存在单模型检测算法对多粒度特征适用性差和混合流量检测误报率高的问题。提出基于Stacking策略和多特... 加密技术保护网络通信安全的同时,大量恶意软件也采用加密协议来隐藏其恶意行为。在现有基于机器学习的TLS加密恶意流量检测模型中,存在单模型检测算法对多粒度特征适用性差和混合流量检测误报率高的问题。提出基于Stacking策略和多特征融合的非解密TLS加密恶意流量检测方法。分析加密恶意流量特征多粒度的特点,提取流量的流特征、连接特征和TLS握手特征。对所提取的特征通过特征工程进行规约处理,从而减少计算开销。对规约处理后的3类特征分别建立随机森林、XGBoost和高斯朴素贝叶斯分类器模型学习隐藏在流量内部的规律。在此基础上,使用流指纹融合处理后的多维特征,利用Stacking策略组合3个分类器,构成DMMFC检测模型来识别网络中的TLS加密恶意流量。基于CTU-13公开数据集对构建的模型进行性能评估,实验结果表明,该方法在二分类实验上识别召回率高达99.93%,恶意流量检测的误报率低于0.10%,能够有效检测非解密的TLS加密恶意流量。 展开更多
关键词 加密恶意流量 TLS协议 stacking策略 特征降维 多特征融合
在线阅读 下载PDF
基于XGBoost与Stacking模型融合的短期母线负荷预测 被引量:50
12
作者 刘波 秦川 +3 位作者 鞠平 赵静波 陈彦翔 赵健 《电力自动化设备》 EI CSCD 北大核心 2020年第3期147-153,共7页
母线负荷预测对于电网安全稳定调度具有重要意义,但母线负荷随机波动性较强,其负荷类型因供电区域的差异而不同。为此,提出一种基于极限梯度提升(XGBoost)与Stacking模型融合的短期母线负荷预测方法。基于XGBoost建立多个母线负荷预测... 母线负荷预测对于电网安全稳定调度具有重要意义,但母线负荷随机波动性较强,其负荷类型因供电区域的差异而不同。为此,提出一种基于极限梯度提升(XGBoost)与Stacking模型融合的短期母线负荷预测方法。基于XGBoost建立多个母线负荷预测元模型,组合构成Stacking模型融合的元模型层,连接一个XGBoost模型对元模型进行融合,整体构成综合预测系统,并采用粒子群优化算法优化系统参数。通过对具有不同负荷属性的220 kV母线进行实例分析,验证了所提方法的有效性与适用性。 展开更多
关键词 母线负荷 XGBoost 元模型 stacking模型融合 粒子群优化算法
在线阅读 下载PDF
基于机器学习算法及Stacking融合集成模型的矿柱稳定性分析 被引量:10
13
作者 张文革 董陇军 +4 位作者 王加闯 龚甦文 罗才严 郝晨良 曹恒 《金属矿山》 CAS 北大核心 2023年第10期67-74,共8页
留设矿柱作为确保矿山地下安全开采的重要手段,开展其稳定性研究对矿山的安全生产具有重要意义。为此,基于机器学习算法及Stacking融合策略开展了矿柱稳定性分析。首先,通过对原始矿柱稳定性数据样本进行统计分析,利用SMOTE(Synthetic M... 留设矿柱作为确保矿山地下安全开采的重要手段,开展其稳定性研究对矿山的安全生产具有重要意义。为此,基于机器学习算法及Stacking融合策略开展了矿柱稳定性分析。首先,通过对原始矿柱稳定性数据样本进行统计分析,利用SMOTE(Synthetic Minority Over-sampling Technique)算法对原始数据进行了样本平衡化处理,并按照80%的数据作为训练集、20%的数据作为测试集进行划分。其次,使用随机森林算法(Random Forest,RF)、K-近邻算法(K-nearest Neighbor,KNN)、支持向量机算法(Support Vector Machine,SVM)、线性判别降维算法(Linear Discriminant Dimensionality Reduction,LDA)、多层神经网络算法(Multi-layer Neural Network,MLPC)以及逻辑回归算法(Logistic Regression,LR)等不同算法进行分类计算。然后,通过随机搜索算法和五折交叉验证来获取每个模型的最优超参数,并分别选取上述单个方法为元模型,结合Stacking融合策略构建6种集成模型。最后,通过对比评价模型的准确率、召回率、精确率和F_(1)指数等指标来确定最佳的评估方法。研究表明:在传统机器学习算法中,SVM算法在分类任务中表现最优,而在采用Stacking融合策略的集成模型中,以随机森林作为元模型的Stacking模型展现出最佳性能;此外,通过采用Stacking融合策略,整个集成算法模型相较于各个算法对应的元模型,性能得到明显提升。 展开更多
关键词 矿柱稳定性 超参数优化 stacking融合策略 性能评估
在线阅读 下载PDF
基于动态聚类的Stacking算法及其应用 被引量:2
14
作者 张晏 鲍胜利 王啸飞 《计算机应用》 CSCD 北大核心 2022年第S02期100-104,共5页
针对传统Stacking算法手动选择基学习器存在效率低和无法选择最优基学习器的问题,提出一种基于动态聚类的Stacking算法并将其应用于销量预测任务中。首先,通过轮廓系数法对多个初始基学习器的输出以不同的簇数计算其轮廓系数值;然后,动... 针对传统Stacking算法手动选择基学习器存在效率低和无法选择最优基学习器的问题,提出一种基于动态聚类的Stacking算法并将其应用于销量预测任务中。首先,通过轮廓系数法对多个初始基学习器的输出以不同的簇数计算其轮廓系数值;然后,动态选择系数值最大时的簇数进行k-means聚类,每轮聚类后根据各簇心与标签值的误差给予回报值奖励;最后,选择回报值最大的簇所包含的基学习器作为最优基学习器。实验结果表明,所提算法与基于特征融合的Stacking算法相比,均方根百分比误差(RMSPE)降低了1.3个百分点,平均绝对百分比误差(MAPE)降低了1.0个百分点;与基于层次分析的Stacking算法相比,RMSPE降低了1.1个百分点,MAPE降低了0.8个百分点。 展开更多
关键词 集成学习 stacking算法 动态聚类 深度学习 特征融合 销售预测
在线阅读 下载PDF
基于Stacking集成模型的台区线损率预测方法研究 被引量:19
15
作者 李晋源 保富 +1 位作者 胡凯 张丽娟 《电测与仪表》 北大核心 2023年第1期71-77,共7页
针对现有线损率预测方法预测精度较低的问题,提出了一种将Stacking集成学习模型与改进的k-均值聚类方法相结合用于预测台区的线损率。通过聚类方法进行数据聚类,再通过Stacking集成学习模型对台区线损率进行预测。Stacking集成学习模型... 针对现有线损率预测方法预测精度较低的问题,提出了一种将Stacking集成学习模型与改进的k-均值聚类方法相结合用于预测台区的线损率。通过聚类方法进行数据聚类,再通过Stacking集成学习模型对台区线损率进行预测。Stacking集成学习模型由XGBoost模型、梯度决策树模型和支持向量机模型构成。与传统预测方法进行对比分析试验验证可行性。结果表明,与传统的线损率预测方法相比,所提出的线损率预测方法具有更好的预测效果,更高的预测精度和拟合效果。该研究为实现电网双碳目标提供了一定的参考。 展开更多
关键词 智能电网 线损率预测 K-MEANS聚类算法 stacking融合学习模型 双碳目标
在线阅读 下载PDF
基于Stacking-Bagging-Vote多源信息融合模型的财务预警应用 被引量:5
16
作者 张露 刘家鹏 田冬梅 《计算机应用》 CSCD 北大核心 2022年第1期280-286,共7页
集成重采样技术可以在一定程度上解决财务预警研究中样本的不平衡性难题,而不同的集成模型与不同的重采样集成技术有不同的适配性。研究发现,Up-Down集成采样与Tomek-Smote集成采样分别适配于Bagging-Vote集成模型和Stacking融合模型。... 集成重采样技术可以在一定程度上解决财务预警研究中样本的不平衡性难题,而不同的集成模型与不同的重采样集成技术有不同的适配性。研究发现,Up-Down集成采样与Tomek-Smote集成采样分别适配于Bagging-Vote集成模型和Stacking融合模型。基于此,构建了Stacking-Bagging-Vote(SBV)多源信息融合模型。首先,将基于Up-Down集成采样的Bagging-Vote模型与基于Tomek-Smote采样的Stacking模型进行融合;然后,加入股票的交易数据,并对该数据用卡尔曼滤波进行处理,从而形成数据层次和模型层次的交互式融合优化;最终,得到SBV多源信息融合模型。该融合模型不仅在预测性能上有了较大的提升,能较好地兼顾模型的预测准确度和预测精确率,并且可以根据利益相关者的实际需要,通过调整模型参数,来选择对应的SBV多源信息融合模型进行财务预警预测。 展开更多
关键词 财务预警 多源信息融合 集成重采样技术 stacking-Bagging-Vote模型 卡尔曼滤波
在线阅读 下载PDF
基于Stacking融合模型的乌鲁木齐市空气质量指数预测 被引量:1
17
作者 史江振 窦燕 《农业灾害研究》 2023年第4期125-128,共4页
随着社会的发展和公众环保意识的增强,空气质量日益成为公众关注的问题。预测未来空气质量情况,有利于提前采取污染防治措施和居民活动选择。以污染物因素和气象因素作为空气质量指数预测指标,建立基于Stacking融合的预测模型,利用新疆... 随着社会的发展和公众环保意识的增强,空气质量日益成为公众关注的问题。预测未来空气质量情况,有利于提前采取污染防治措施和居民活动选择。以污染物因素和气象因素作为空气质量指数预测指标,建立基于Stacking融合的预测模型,利用新疆乌鲁木齐市2016年1月至2021年12月的空气污染物监测数据和气象数据,对乌鲁木齐市空气质量情况进行了预报,并与其他算法进行了对比。研究结果表明:Stacking融合模型在AQI数值预测方面的性能优于其他对比模型,具有良好的预测效果。 展开更多
关键词 空气质量预测 stacking融合模型 空气质量指数
在线阅读 下载PDF
基于TLF-YOLOv8的堆叠垃圾实例分割算法
18
作者 李利 梁晶 +2 位作者 陈旭东 潘红光 寇发荣 《科学技术与工程》 北大核心 2025年第5期2009-2018,共10页
相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的... 相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的实例分割算法。首先,在数据预处理部分进行特征数据分层,并通过双层图卷积网络(graph convolutions network,GCN)实现双分支特征融合,减弱堆叠情况对被遮挡物体特征的影响,从而解决复杂堆叠遮挡下的实例分割问题。同时,为了解决同类待测物体易混淆的问题,融入了软阈值化非极大值抑制算法和新的交并比算法。最后,根据应用场景和数据集的复杂性,优化了主干网络部分的特征提取模块,并在主干网络部分引入了多尺度注意力机制,有效提高了模型的检测性能。实验使用遮挡垃圾分类实例分割数据集,实验结果表明该方法的平均准确率、交并比阈值为0.5时的平均准确率(AP_(50))、交并比为0.5~0.95时的平均准确率(AP_(50~95))等指标较之前的其他方法更优。相较于原YOLOv8算法,检测AP_(50)提高了7.9%,分割AP_(50)提高了5.4%,具有更好的检测和分割效果。 展开更多
关键词 垃圾堆叠 双层特征解耦融合 YOLOv8算法 软阈值化非极大值抑制 动态非单调聚焦机制 期望最大化注意力
在线阅读 下载PDF
基于温度热模型与数据融合驱动的海上风力发电机故障早期预警 被引量:1
19
作者 魏书荣 周海林 +2 位作者 符杨 黄玲玲 葛晓琳 《高电压技术》 北大核心 2025年第10期4945-4956,I0001,I0002,共14页
自海上风电进入平价时代,迫切需要更加精准的故障预警提高风力发电机的可靠运行水平,减少发电损失,但仅依靠物理或数据模型进行风力发电机早期故障预警受限于模型准确性的问题影响预警精度。为此,提出一种模型-数据融合的建模方法,基于... 自海上风电进入平价时代,迫切需要更加精准的故障预警提高风力发电机的可靠运行水平,减少发电损失,但仅依靠物理或数据模型进行风力发电机早期故障预警受限于模型准确性的问题影响预警精度。为此,提出一种模型-数据融合的建模方法,基于等效热网络模型和Stacking集成算法融合驱动实现海上双馈风力发电机早期故障预警。首先,利用等效热网络法构建风力发电机温度的热平衡矩阵,求解得到各节点稳态温度值,采用一阶RC热网络模型描述温度随时间变化的趋势;然后,将热模型计算得到的定子绕组温度和其他相关变量作为Stacking集成算法的输入特征,对定子绕组温度值进行校正;最后,利用K-S(Kolmogorov-Smirnov)检验原理确定自适应阈值,根据残差的变化趋势进行早期故障预警。以国内某海上风电场SCADA数据为例进行分析,验证融合模型的有效性。基于温度热模型与数据融合驱动的海上风力发电机故障早期预警方法具有通用性,为海上风电高质量发展提供技术支撑。 展开更多
关键词 海上风电 故障预警 模型-数据融合 stacking集成算法
在线阅读 下载PDF
基于信息融合与堆叠卷积网络的TBM推力和扭矩预测
20
作者 杨耀红 张哲 +2 位作者 陈建国 李群胜 刘宇翔 《水电能源科学》 北大核心 2025年第9期92-96,共5页
合理准确预测隧道掘进机的推力和扭矩是实现TBM智能化控制的关键问题之一。对此,提出一种两阶段知识数据双驱动时空堆叠卷积网络(KD-NTS-GAT)预测方法。首先基于专家知识表达与NTS-NOTEARS方法提出一种新的信息融合技术,通过聚类方法将... 合理准确预测隧道掘进机的推力和扭矩是实现TBM智能化控制的关键问题之一。对此,提出一种两阶段知识数据双驱动时空堆叠卷积网络(KD-NTS-GAT)预测方法。首先基于专家知识表达与NTS-NOTEARS方法提出一种新的信息融合技术,通过聚类方法将离散的专家经验与NTS-NOTEARS连续指标进行映射并平滑融合,量化提取TBM关键运行参数之间的因果关系,显著提高了因果关系的真实性。然后,将因果关系作为先验知识进一步与堆叠卷积网络深度学习模型结合,用于预测TBM推力和扭矩。结合新疆输水隧洞工程Ⅳ标段,将KD-NTS-GAT方法与纯数据驱动结果进行对比分析,结果表明两阶段知识数据双驱动时空堆叠卷积网络具有更好的推力与扭矩预测能力。研究结论可为TBM施工智能化控制提供参考。 展开更多
关键词 TBM 信息融合 NTS-NOTEARS 堆叠卷积网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部