期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
基于STGCN-Transformer的短期电力净负荷预测
1
作者 孟伟 俞斌 +3 位作者 白隆 徐婕 顾晋豪 郭锋 《中国测试》 北大核心 2025年第6期160-169,共10页
智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题... 智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题,该文提出一种基于时空图卷积网络(spatial temporal graph convolutional networks,STGCN)和Transformer相结合的综合能源系统短期负荷预测模型。首先,利用STGCN作为输入嵌入层对多元输入序列进行编码,填补Transformer中没有充分考虑相关信息的空白。然后,利用Transformer中的自注意机制捕获序列数据的时间依赖性。最后,利用前馈神经网络输出预测负荷值。以浙江省某地区电力数据集为例,与其他4种预测模型相比较平均绝对百分比误差均在5%以内,结果表明该文模型具有较高的预测精度和稳定性。 展开更多
关键词 时空图卷积网络 TRANSFORMER 多头注意力机制 短期净负荷预测
在线阅读 下载PDF
应用STGCN时空建模的地震波阻抗反演方法
2
作者 王泽峰 赵海波 +3 位作者 杨懋新 王团 许辉群 毛伟建 《石油地球物理勘探》 北大核心 2025年第1期43-53,共11页
现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓... 现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓扑结构及互相关性,使用马氏距离对地震数据进行空间邻近度的加权处理建立邻接矩阵;进一步通过切比雪夫多项式扩大空间感受野的同时减少参数量,高效地提取地震数据的空间构造特征,同时利用门控循环单元捕获其时序相关性;最后构建时空图卷积单元实现基于STGCN的地震数据与波阻抗在时间和空间两个维度的映射。模型测试及实际资料反演结果表明,该方法在提高反演精度的同时对噪声具有一定的适应性,并可以很好的体现地层的横向变化。 展开更多
关键词 地震波阻抗反演 深度学习 时空建模 时空图卷积神经网络
在线阅读 下载PDF
基于改进STGCN与N-BEATS的风功率超短期预测
3
作者 程旭初 刘景霞 康荣凯 《现代电子技术》 北大核心 2025年第8期115-121,共7页
精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提... 精准的风功率预测对电网调度具有重大意义,针对现有预测方法中数据特征提取不充分、输入序列过长时产生梯度消失和预测精度低的问题,提出一种基于改进时空图卷积(STGCN)与神经基扩展分析(N-BEATS)模型的组合预测模型,该方法通过充分提取数据时空特征来提高预测精度。首先,利用STGCN对多元输入序列进行深度特征提取,充分挖掘风机SCADA数据中的时空潜在关系;同时,为了进一步提高预测精度,通过构建序列分解模块与多分辨率卷积对STGCN模型进行改进,使其能够更好地适应风电数据的复杂特性;然后,神经基扩展分析(N-BEATS)新型神经网络对STGCN提取的时空信息数据进行时序关系分析,得到最终预测结果;最后,以内蒙古某风场SCADA数据为例,通过多模型对比实验与自身消融实验验证了所提组合模型策略的有效性以及对STGCN的改进效果。实验结果表明,所设计模型在预测精度上取得了显著的提升,为风电功率预测领域的研究提供了新的思路和方法。 展开更多
关键词 超短期风功率预测 时空图卷积 神经基扩展分析 序列分解 深度特征提取 图卷积网络
在线阅读 下载PDF
一种改进STGCN的深地时空域地震子波提取方法 被引量:1
4
作者 戴永寿 孙家钊 +3 位作者 李泓浩 颜廷尚 孙伟峰 左琳 《石油物探》 CSCD 北大核心 2024年第6期1111-1125,1137,共16页
地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道... 地震子波的准确提取可有效提高全波形反演和偏移成像等方法的准确性,对储层预测和油气分析具有重要意义。由于深层能量衰减和复杂地质构造,地震子波不仅具有时变特性,同时也具有不可忽略的空变特性。而传统时变子波提取方法仅通过单道地震记录提取时变子波,忽略了多道地震记录之间子波的空间变化。同时,传统时空域子波提取方法,如经验模态分解(EMD)方法,对测井资料等先验信息依赖程度较高,实际应用范围受限。深度学习为时空域子波提取提供了新的思路,针对以上问题,提出了一种改进时空图卷积神经网络(STGCN)的时空域子波提取方法。首先,根据目标区地震数据分布特征与非平稳性质,建立以非平稳地震剖面为输入,时空域子波为标签的合成训练数据,再利用传统EMD时变子波提取方法逐道提取目标区子波,有针对性地构建以目标区地震剖面为输入,目标区时空域子波为标签的实际训练数据。最后,利用两种训练数据对改进后的STGCN进行训练,使其能够融合提取的子波时空特征,从而实现目标区时空域子波的有效提取。合成数据和实际地震数据的处理结果表明,该方法对于深地时空域子波的提取有效且准确,相较于传统方法更具优越性,具有较好的实际应用价值。 展开更多
关键词 深度学习 时空域子波提取 时空图卷积神经网络 时空特征
在线阅读 下载PDF
基于STGCN算法的视频图像人体动作轮廓动态识别 被引量:2
5
作者 张宗 石林 《现代电子技术》 北大核心 2024年第18期144-148,共5页
人体动作轮廓在视频中的呈现具有多样性和连续性。人体动作不仅涉及到时间上的变化,还包括空间上的位置关系,受其姿势、速度、方向等影响。人体动作时空信息之间的关联难以充分捕捉,导致动作轮廓识别精度较低。为此,引入时空图卷积网络(... 人体动作轮廓在视频中的呈现具有多样性和连续性。人体动作不仅涉及到时间上的变化,还包括空间上的位置关系,受其姿势、速度、方向等影响。人体动作时空信息之间的关联难以充分捕捉,导致动作轮廓识别精度较低。为此,引入时空图卷积网络(STGCN)算法,提出一种视频图像人体动作轮廓动态识别方法。文中采用OpenPose模型从视频图像中提取描述关节点位置的置信图和描述人体关节间连接情况的二维矢量场,构建人体动作骨架图。结合视频帧时间序列组建人体动作骨架时空图,将其作为STGCN模型的输入,通过时空图卷积操作充分捕捉人体动作的时空特征后,采用Softmax层获取动态识别到的视频图像人体动作轮廓;并在STGCN模型中引入两种注意力模块,强化网络特征提取能力,提高动作轮廓识别精度。实验结果表明,所提方法可以有效实现视频图像人体动作轮廓的动态识别,引入的两种注意力模块对STGCN模型进行改进,可提升其动作轮廓识别效果。 展开更多
关键词 时空图卷积网络算法 视频图像 人体动作轮廓 动态识别 注意力机制 骨架图 人体关节点
在线阅读 下载PDF
深度时空混合图卷积的城市交通预测模型 被引量:1
6
作者 郭海锋 许宏伟 周子盛 《小型微型计算机系统》 北大核心 2025年第1期97-103,共7页
由于交通网络复杂的时空相关性和交通数据的非线性,给交通预测带来了很大的挑战.现有的方法主要关注路网的时空特征,分别对时间相关性和空间相关性进行建模来模拟时空依赖关系.随着城市道路网络的进一步扩大,导致模型对路网空间特征的... 由于交通网络复杂的时空相关性和交通数据的非线性,给交通预测带来了很大的挑战.现有的方法主要关注路网的时空特征,分别对时间相关性和空间相关性进行建模来模拟时空依赖关系.随着城市道路网络的进一步扩大,导致模型对路网空间特征的挖掘能力不足.此外,交通运行状态受到外部环境因素的干扰,交通流在路段传递效应的影响下会出现较大波动.为解决上述问题,提出深度时空混合图卷积模型,利用图卷积网络和图注意力网络的残差连接分别汇聚路网全局和局部信息,扩展图卷积的感受野范围,从而增强路网空间特征的提取能力.受Transformer在长序列预测上的启发,同时为减少计算复杂度,通过引入Informer模型来处理路网数据潜在的时间依赖性,实现对交通流参数的长期预测能力,并对城市天气和POI(医院,学校,商场)等外部因素进行编码来增强路网信息的属性.为验证所提出模型的性能,在真实数据集上开展实验,对模型进行准确性和可行性分析.实验结果表明,深度时空混合图卷积模型预测精度最高达到75.1%,较Transformer和Informer分别提升了2.5%和2.3%,在不同预测范围下都超过了其他基线模型,具有长期的交通预测能力. 展开更多
关键词 交通预测 时空依赖 道路网络 图神经网络 长期预测
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
7
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
动静图融合和时序流注意力网络用于交通流预测
8
作者 闫敬 王祥 郑铮 《兵工自动化》 北大核心 2025年第5期66-70,共5页
为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correla... 为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correlation modeling,TCM)模块替换流注意力机制的线性变换方法,以增强模型的时序建模能力。在4个真实世界的交通数据集上进行了大量实验。实验结果表明:所提出的模型具有优越的性能,并且明显优于基线。 展开更多
关键词 交通流预测 时空相关性 流注意力机制 图卷积网络 特征融合
在线阅读 下载PDF
利用混合深度学习算法的时空风速预测
9
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
10
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 图神经网络(GNN) 时间卷积网络(TCN) 多维注意力机制
在线阅读 下载PDF
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型
11
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
利用地理空间和时间信息GNN-Transformer在MJO预测中的应用
12
作者 魏晓辉 徐哲文 +2 位作者 王兴旺 郝介云 刘长征 《吉林大学学报(理学版)》 北大核心 2025年第1期67-75,共9页
针对目前深度学习在极端天气现象Madden-Julian振荡(MJO)预测任务中表现欠佳的问题,提出一种基于动态图神经网络与Transformer结合的时序预测模型.首先,将地球海陆二维网格映射到图结构的节点上,并提出利用多重注意力混合海陆掩码的方... 针对目前深度学习在极端天气现象Madden-Julian振荡(MJO)预测任务中表现欠佳的问题,提出一种基于动态图神经网络与Transformer结合的时序预测模型.首先,将地球海陆二维网格映射到图结构的节点上,并提出利用多重注意力混合海陆掩码的方法进行节点筛选;其次,使用基于热传导与节点相似度度量进行边权重的迭代更新,以获取每个时间步中最准确的气候模式信息;再次,使用最大极值法抽取不同时间段的异常节点信息作为极端气候的发生点,并对这类点的变权重进行强化;最后,将上述结果输入到图神经网络进行编码,并使用Transformer进行解码操作获取预测结果.实验结果表明,该模型在预测中最高可获得39 d的双变量相关系数(COR)有效预测值,以及31 d的均方根误差(RMSE)有效预测值,性能优于现有模型. 展开更多
关键词 时空预测 图神经网络 天气预测 时间序列预测
在线阅读 下载PDF
融合时空特征的多模态车辆轨迹预测方法
13
作者 史昕 王浩泽 +1 位作者 纪艺 马峻岩 《计算机工程与应用》 北大核心 2025年第7期325-333,共9页
针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间... 针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间特征提取。通过特征融合门控单元实现每个时间步长对应时空特征的自适应融合,并利用门控循环单元(GRU)网络构建解码器进一步生成未来车辆轨迹的概率分布。利用公开的NGSIM数据集对所提出模型进行消融实验及预测精度分析。仿真结果表明,GCNTA模型在预测误差均方根(RMSE)平均值相比GCN、图注意力网络(GAT)和长短期记忆网络(LSTM)模型分别减少15.6%、16.3%和23.8%。 展开更多
关键词 车辆轨迹预测 深度学习 图神经网络 时域卷积网络 注意力机制
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究
14
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
考虑时空信息结合的电力系统暂态稳定评估
15
作者 李欣 李文斌 +3 位作者 赵张飞 李新宇 欧阳子帅 郭攀锋 《电力系统及其自动化学报》 北大核心 2025年第6期68-80,共13页
为进一步提升电力系统暂态稳定评估模型性能并解决数据样本不平衡导致的模型评估结果可信度低的问题,本文提出一种基于时空信息结合及损失函数改进的新型电力系统暂态稳定评估模型。首先,分别利用下采样交互卷积网络与图注意力网络充分... 为进一步提升电力系统暂态稳定评估模型性能并解决数据样本不平衡导致的模型评估结果可信度低的问题,本文提出一种基于时空信息结合及损失函数改进的新型电力系统暂态稳定评估模型。首先,分别利用下采样交互卷积网络与图注意力网络充分挖掘电力系统运行数据中的时序特征信息及空间特征信息,并采用拼接操作对特征信息进行融合,提升模型对电力系统暂态稳定特征的提取与表征能力。然后,引入焦点损失函数提升模型对失稳样本的辨识能力,并采用物理知识对其进行改进,以增加模型评估结果的可信性。最后,分别采用IEEE 39、IEEE 145和IEEE 300节点系统对所提模型进行验证,实验结果表明,所提评估模型相较其他评估模型具有更优的评估性能及可信性。 展开更多
关键词 暂态稳定评估 时空特征 图注意力 交互卷积 物理知识
在线阅读 下载PDF
基于时空动态图的交通流量预测方法研究
16
作者 孟祥福 谢伟鹏 崔江燕 《智能系统学报》 北大核心 2025年第4期776-786,共11页
为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动... 为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动的角度挖掘潜在的时空关系,并重构每个时间步的节点动态关联图。嵌入层使用时空自适应嵌入方法建模交通数据的内在时空关系和时间信息;编码器部分利用时空记忆注意力机制,从全局视角对时空特征进行建模;解码器部分将图卷积模块注入循环神经网络中,以同时捕捉时间和空间依赖关系,并输出未来流量情况。实验结果表明,所提模型与最优基线模型解耦动态时空图神经网络(decoupled dynamic spatial-temporal graph neural network,D2STGNN)相比,平均绝对误差降低了1.63%,模型训练时间缩短了近2.5倍。本研究有效提升了交通流量预测的准确性与效率,为智能交通系统的建设提供了有力支撑。 展开更多
关键词 交通流量 时空数据 混合模型 注意力机制 时空动态图 图卷积神经网络 循环神经网络 深度学习
在线阅读 下载PDF
基于时空图卷积网络与多层次特征融合的快递员3D人体姿态估计
17
作者 丁德波 史耀群 《传感技术学报》 北大核心 2025年第8期1457-1462,共6页
将快递员的人体动作数字化,赋能物流行业的智能化转型,从提升效率、保障健康到推动人机协作,具有广泛的应用潜力。提出了一种新方法,融合了时空图卷积网络与多层次特征融合技术。该方法首先利用时空图卷积网络对人体骨架序列进行建模,... 将快递员的人体动作数字化,赋能物流行业的智能化转型,从提升效率、保障健康到推动人机协作,具有广泛的应用潜力。提出了一种新方法,融合了时空图卷积网络与多层次特征融合技术。该方法首先利用时空图卷积网络对人体骨架序列进行建模,有效提取关节间的空间关系及时序依赖性。接着,通过引入多层次特征融合模块,融合来自不同网络层的特征信息,包括低层次的细节特征和高层次的抽象特征,从而更全面地捕捉快递员的人体关节动态变化和运动模式。为了验证所提方法的性能,在公开数据集Human3.6M上进行了实验。该数据集由视觉传感器采集得到,包含了丰富的人体姿态信息。仿真实验结果表明,所提出的方法能够显著提高三维姿态估计的精度。 展开更多
关键词 三维人体姿态估计 时空图卷积网络 多层次特征融合
在线阅读 下载PDF
计及动态时空相关性的多风电场短期功率预测
18
作者 李丹 黄烽云 +3 位作者 杨帆 唐建 罗娇娇 方泽仁 《电力系统及其自动化学报》 北大核心 2025年第2期1-9,共9页
针对同一区域内多风电场出力间复杂且动态的时空相关性,提出一种基于注意力时空同步图卷积网络的多风电场短期功率预测模型。首先引入注意力机制量化天气特征对风功率的影响,构建相邻3个时间步的风功率局部时空图,卷积提取局部时空特征... 针对同一区域内多风电场出力间复杂且动态的时空相关性,提出一种基于注意力时空同步图卷积网络的多风电场短期功率预测模型。首先引入注意力机制量化天气特征对风功率的影响,构建相邻3个时间步的风功率局部时空图,卷积提取局部时空特征;然后用时空同步图卷积层聚合输入时窗的整体时空特征;最后非线性映射输出多风电场未来时段的功率预测结果。实际算例结果表明,所提模型通过学习不同天气条件下风功率的时空动态演变规律,可将多风电场日前功率预测精度提高2.10%~13.94%。 展开更多
关键词 深度学习 风电功率 相关性 时空同步图卷积网络 功率预测
在线阅读 下载PDF
基于分解动态时空分解框架预测交通流量 被引量:1
19
作者 蒋挺 杨柳 +2 位作者 刘亚林 张邵华 石硕 《科学技术与工程》 北大核心 2025年第7期3007-3017,共11页
近几年,时空图卷积网络(spatial-temporal graph convolutional network, STGCN)被引入交通流量预测中,具有良好的时空交通数据建模能力,取得了先进的性能,但是仍存在两个问题:(1)交通流量数据具有很强的时空相关性;(2)静态的预定义图... 近几年,时空图卷积网络(spatial-temporal graph convolutional network, STGCN)被引入交通流量预测中,具有良好的时空交通数据建模能力,取得了先进的性能,但是仍存在两个问题:(1)交通流量数据具有很强的时空相关性;(2)静态的预定义图难以捕获交通流随时间动态变化的时空依赖关系。为解决以上问题,提出了一种新的时空分解框架(spatial-temporal decomposed framework, STDF),它使用了残差连接、遗忘门、更新门,将时间模块和空间模块有机连接起来,以将输入信息进行多层次双维度的分解和预测。此外将STDF进行实例化,提出一种新的基于输入交通信号分解的动态时空融合的交通预测模型(decomposed dynamic spatial-temporal graph convolutional network, DDSTGCN),它捕捉了交通的时空相关性,并设计了一个动态图学习模块,考虑了空间依赖的动态性质。最后利用两个真实交通流量的数据(在PEMS04和PEMS08的数据集),与现有的交通流量预测算法进行对比。实验结果证明,所提方法在交通流量预测的准确率有良好的性能表现,能够有效地完成真实场景下的交通流量预测。 展开更多
关键词 交通流量预测 时空图卷积网络(stgcn) 时空相关性 时空融合 动态图学习
在线阅读 下载PDF
时–空特征驱动的多轮次重构图卷积网络故障诊断方法 被引量:1
20
作者 王庆昕 张先杰 +3 位作者 张海峰 钟凯 陈宏田 韩敏 《控制理论与应用》 北大核心 2025年第1期149-157,共9页
近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出... 近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出了一种时–空特征驱动的多轮次重构图卷积网络(STMR-GCN)故障诊断方法.该方法首先利用多尺度卷积神经网络与GCN对故障信号进行特征提取.然后根据样本之间的余弦相似性对图结构进行多次重构,重构后的图模型能够更精确地反映样本之间的连边关系,并将得到的图模型输入到GCN进行故障种类的识别.最后,在东南大学(SEU)仿真数据集和真实的磨煤机数据集上进行实验,实验结果表明所提方法与其他对比方法相比诊断精度均有提高,从而证明STMR-GCN模型在故障诊断方面的有效性和实用性. 展开更多
关键词 故障诊断 时空特征 多轮次图重构 图卷积网络
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部