光伏板作为光伏发电系统的核心组件,其质量直接关系到发电效率和电路安全。然而,现有的光伏板缺陷检测算法在特征提取时未能充分结合卷积神经网络(convolutional neural network,CNN)与Transformer的优势,这在一定程度上限制了模型的整...光伏板作为光伏发电系统的核心组件,其质量直接关系到发电效率和电路安全。然而,现有的光伏板缺陷检测算法在特征提取时未能充分结合卷积神经网络(convolutional neural network,CNN)与Transformer的优势,这在一定程度上限制了模型的整体性能。为此,提出了一种基于全局与局部特征提取增强的光伏板缺陷检测算法(global and local feature enhanced YOLOX,GLF-YOLOX)。在编码阶段,结合CNN和Transformer的特长,设计了双分支主干网络,用于高效提取图像的局部细节和全局上下文信息。通过全局与局部增强注意力机制,动态融合全局与局部特征,增强模型对目标区域的关注能力并强化细节特征表达。设计了基于Transformer编码器层的检测头,用于精确建模全局特征并优化特征表达,从而显著提升分类任务的准确性。实验结果表明,所提算法在消融实验和对比实验中均表现优异,相较于主流目标检测方法,在平均精度(mean average precision,mAP)指标上提高了约4.5%,进一步验证了算法的有效性和优越性。展开更多
生物特征识别系统必须拥有快速准确的分类能力。针对传统人脸活体检测方法的特征提取单一和基于深度学习的检测算法中的网络训练时间长、梯度容易消失以及过拟合等问题,提出一种新型人脸活体检测算法BM-CNN(based on mixnetwork-convolu...生物特征识别系统必须拥有快速准确的分类能力。针对传统人脸活体检测方法的特征提取单一和基于深度学习的检测算法中的网络训练时间长、梯度容易消失以及过拟合等问题,提出一种新型人脸活体检测算法BM-CNN(based on mixnetwork-convolutional neural network)。算法首先采用人脸分割技术和基于曲率滤波的图像增强技术对人脸图像进行预处理,然后使用优化卷积神经网络(convolutional neural network,CNN)对预处理图像进行特征提取与决策分类。对卷积神经网络,提出一种复合的并行卷积神经网络,CNN使用二均值池化策略,并综合批量归一化BN(batch normalization)方法和多类型非线性单元提高算法检测性能,通过双线并行的卷积神经网络对活体人脸进行检测。在NUAA数据库和CASIA数据库上对算法进行对比实验,实验结果显示该算法能对人脸图像进行准确的分类,并在样本数量和训练时间上有较大的提升。展开更多
文摘光伏板作为光伏发电系统的核心组件,其质量直接关系到发电效率和电路安全。然而,现有的光伏板缺陷检测算法在特征提取时未能充分结合卷积神经网络(convolutional neural network,CNN)与Transformer的优势,这在一定程度上限制了模型的整体性能。为此,提出了一种基于全局与局部特征提取增强的光伏板缺陷检测算法(global and local feature enhanced YOLOX,GLF-YOLOX)。在编码阶段,结合CNN和Transformer的特长,设计了双分支主干网络,用于高效提取图像的局部细节和全局上下文信息。通过全局与局部增强注意力机制,动态融合全局与局部特征,增强模型对目标区域的关注能力并强化细节特征表达。设计了基于Transformer编码器层的检测头,用于精确建模全局特征并优化特征表达,从而显著提升分类任务的准确性。实验结果表明,所提算法在消融实验和对比实验中均表现优异,相较于主流目标检测方法,在平均精度(mean average precision,mAP)指标上提高了约4.5%,进一步验证了算法的有效性和优越性。