期刊文献+

应用卷积神经网络的人脸活体检测算法研究 被引量:17

Research on Face Liveness Detection Algorithm Using Convolutional Neural Network
在线阅读 下载PDF
导出
摘要 生物特征识别系统必须拥有快速准确的分类能力。针对传统人脸活体检测方法的特征提取单一和基于深度学习的检测算法中的网络训练时间长、梯度容易消失以及过拟合等问题,提出一种新型人脸活体检测算法BM-CNN(based on mixnetwork-convolutional neural network)。算法首先采用人脸分割技术和基于曲率滤波的图像增强技术对人脸图像进行预处理,然后使用优化卷积神经网络(convolutional neural network,CNN)对预处理图像进行特征提取与决策分类。对卷积神经网络,提出一种复合的并行卷积神经网络,CNN使用二均值池化策略,并综合批量归一化BN(batch normalization)方法和多类型非线性单元提高算法检测性能,通过双线并行的卷积神经网络对活体人脸进行检测。在NUAA数据库和CASIA数据库上对算法进行对比实验,实验结果显示该算法能对人脸图像进行准确的分类,并在样本数量和训练时间上有较大的提升。 Biometric identification systems should have fast and accurate classification capabilities.Aiming at the problems of traditional face detection methods,such as single feature extraction and long training time,gradient easy to disappear and over-fitting based on deep learning algorithm,a novel face detection algorithm BM-CNN(based on mixnetwork-convolutional neural network)is proposed.The algorithm firstly uses human face segmentation and image enhancement based on curvature filtering to preprocess human face image,and then uses the optimized convolutional neural network(CNN)to preprocess image feature extraction and decision classification.For the convolutional neural network,a new parallel convolutional network and a new pooling strategy are proposed.CNN uses double-mean pooling strategy and a batch normalization(BN)method and multiple types of nolinear units to improve the algorithm detection performance.BM-CNN detects the human face through the double-line convolutional neural network strategy.Finally,this paper conducts comparative experiments on NUAA and CASIA datasets.The experimental results show that the algorithm can classify the face images accurately and also has some improvement in terms of sample size and training time.
作者 龙敏 佟越洋 LONG Min;TONG Yueyang(College of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha 410114,China;Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation,Changsha University of Science and Technology,Changsha 410114,China)
出处 《计算机科学与探索》 CSCD 北大核心 2018年第10期1658-1670,共13页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61572182 61370225 湖南省自然科学基金No.15JJ2007~~
关键词 生物特征识别 曲率滤波 并行卷积神经网络 二均值池化 批量归一化 biometric feature recognition curvature filter double-line convolutional neural network(CNN) doublemean pooling batch normalization
作者简介 龙敏(1977—),女,湖南湘乡人,2006年于华南理工大学获得博士学位,现为长沙理工大学教授、硕士生导师,主要研究领域为信息安全;Corresponding author:佟越洋(1995—),女,安徽亳州人,长沙理工大学硕士研究生,主要研究领域为信息安全,深度学习等。E-mail:tyy_818@163.com。
  • 相关文献

参考文献2

二级参考文献12

共引文献88

同被引文献78

引证文献17

二级引证文献294

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部