期刊文献+
共找到1,212篇文章
< 1 2 61 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
2
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
3
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network multi-scale feature extraction Residual dense block
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
4
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Full feature data model for spatial information network integration
5
作者 邓吉秋 鲍光淑 《Journal of Central South University of Technology》 EI 2006年第5期584-589,共6页
In allusion to the difficulty of integrating data with different models in integrating spatial information, the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical v... In allusion to the difficulty of integrating data with different models in integrating spatial information, the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical vector-raster integrative full feature model was put forward by integrating the advantage of vector and raster model and using the object-oriented method. The data structures of the four basic features, i.e. point, line, surface and solid, were described. An application was analyzed and described, and the characteristics of this model were described. In this model, all objects in the real world are divided into and described as features with hierarchy, and all the data are organized in vector. This model can describe data based on feature, field, network and other models, and avoid the disadvantage of inability to integrate data based on different models and perform spatial analysis on them in spatial information integration. 展开更多
关键词 full feature model spatial information integration data structure
在线阅读 下载PDF
时空特征强化与感知的视觉目标跟踪方法 被引量:1
6
作者 郭虎升 刘正琪 +1 位作者 刘艳杰 王文剑 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期60-70,共11页
多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object... 多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object tracking method with spatial-temporal feature enhancement and perception,STFEP)。一方面,该方法使用Transformer进行搜索区域与时间上下文特征的提取与融合,以得到全局特征信息,通过设计的局部卷积神经网络,提取目标的局部特征信息,并与目标的全局特征信息相关联,进一步强化目标的特征表示。另一方面,提出了时空特征感知机制,对不同时刻的特征信息进行可靠性和必要性分析,构建动态模板以感知更丰富的时空信息,使模型适应目标及场景的复杂变化。在TrackingNet、GOT-10k、LaSOT、UAV123多个数据集上的实验结果表明,研究所提方法能够准确鲁棒的对目标进行跟踪,并在GOT-10k数据集上取得了最优的结果,AO、SR 0.5以及SR 0.75分别达到了73.7%、83.8%、70.6%。 展开更多
关键词 视觉目标跟踪 时空特征强化 全局-局部信息关联 时空特征感知 动态模板
在线阅读 下载PDF
改进YOLOv5s的路面坑槽目标检测模型 被引量:1
7
作者 赵江平 王欣然 吴立舟 《中国安全科学学报》 北大核心 2025年第1期67-74,共8页
为提高道路安全巡检工作中路面坑槽隐患的检测效率和自动化水平,降低交通事故发生概率,构建一种基于改进YOLOv5s的路面坑槽隐患智能检测模型。在原YOLOv5s网络中加入自适应空间特征融合(ASFF)模块,将主干网络替换为FasterNet网络,引入... 为提高道路安全巡检工作中路面坑槽隐患的检测效率和自动化水平,降低交通事故发生概率,构建一种基于改进YOLOv5s的路面坑槽隐患智能检测模型。在原YOLOv5s网络中加入自适应空间特征融合(ASFF)模块,将主干网络替换为FasterNet网络,引入轻量通道注意力(ECA)模块;通过消融试验分析改进模块对检测模型性能的影响,验证目标检测效果,并开发交互式可视化检测界面。结果表明:改进后的模型精度、召回率和平均检测精度分别提升了4.1%、9.9%和5.6%。较原网络有较为显著的提升,具有良好的检测效果,能够满足路面坑槽自动化检测的应用需求,提高巡检效率,减少因路面坑槽导致的交通事故。 展开更多
关键词 YOLOv5s 路面坑槽 目标检测 自适应空间特征融合(ASFF) FasterNet
在线阅读 下载PDF
空间定位与特征泛化增强的铁路异物跟踪检测 被引量:2
8
作者 陈永 王镇 周方春 《北京航空航天大学学报》 北大核心 2025年第1期9-18,共10页
针对现有深度学习异物跟踪检测算法易受复杂环境、目标遮挡等影响,导致出现漏检及检测精度低等问题,提出了一种空间定位与特征泛化增强的铁路异物跟踪检测算法。提出改进多尺度级联GhostNet特征提取网络,提升对红外目标的特征提取能力;... 针对现有深度学习异物跟踪检测算法易受复杂环境、目标遮挡等影响,导致出现漏检及检测精度低等问题,提出了一种空间定位与特征泛化增强的铁路异物跟踪检测算法。提出改进多尺度级联GhostNet特征提取网络,提升对红外目标的特征提取能力;利用异物空间位置定位与泛化形态信息,设计空间定位与特征泛化增强模块,增强对复杂场景下位置移动与跟踪轨迹变化目标的检测精度;构建金字塔预测网络,得到红外铁路异物的检测锚框、类别及置信度信息;通过改进类别和置信度显示的DeepSORT跟踪算法,结合卡尔曼滤波与匈牙利算法实现红外弱光环境下铁路异物跟踪检测。实验结果表明:所提算法对铁路异物的跟踪检测精确度达到83.3%,平均检测速度为11.3帧/s;与比较算法相比,所提算法检测精度更高,对红外弱光场景下铁路异物跟踪检测具有较好的性能。 展开更多
关键词 机器视觉 异物检测 红外弱光 空间定位 特征泛化增强 目标跟踪
在线阅读 下载PDF
三维人体姿态估计中的多尺度时空特征融合
9
作者 张宇 刘骊 +2 位作者 付晓东 刘利军 彭玮 《计算机辅助设计与图形学学报》 北大核心 2025年第1期75-88,共14页
针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注... 针对视频输入的单人三维人体姿态估计中表征不精确、融合不充分、结果不平滑的问题,提出三维人体姿态估计的多尺度时空特征融合方法.首先在空域定义关节点、肢体和上/下身人体标记并通过位置嵌入表示人体的空间多尺度特征;然后结合自注意力机制和多层感知机构建空间多尺度特征融合模块,融合关节点、肢体和上/下身三个空间多尺度特征,得到初步姿态特征序列;最后建立时序多尺度编码进行时序特征融合获得最终姿态特征序列,并通过时序解码,优化生成细化的三维人体姿态.在Human3.6M数据集上的实验结果表明,所提方法的平均每关节位置P-MPJPE和速度误差MPJVE分别为33.6和2.4,较对比方法降低了2.3%和4.0%,能够降低计算复杂度,提高三维人体姿态估计精度,生成准确、平滑的三维人体姿态估计结果.此外,在HumanEva-I数据集的测试结果表明,所提方法也具有一定的泛化性. 展开更多
关键词 三维人体姿态估计 多尺度特征 自注意力机制 时空特征融合 时序编码
在线阅读 下载PDF
基于特征融合和增强的蚕茧图像分类模型
10
作者 刘莫尘 侯欣 +6 位作者 韦伟 张鑫山 李法德 宋占华 张桂征 梁光健 闫银发 《蚕业科学》 北大核心 2025年第1期59-67,共9页
为对原料茧中的上车茧和下茧进行准确分类,实现蚕茧分拣智能化、机械化,文中提出了一种基于多尺度特征融合和增强的双线性池化分类模型。首先以ResNet41作为特征提取骨干网络构建双线性池化模型,增强网络特征提取能力的同时得到不同维... 为对原料茧中的上车茧和下茧进行准确分类,实现蚕茧分拣智能化、机械化,文中提出了一种基于多尺度特征融合和增强的双线性池化分类模型。首先以ResNet41作为特征提取骨干网络构建双线性池化模型,增强网络特征提取能力的同时得到不同维度语义信息;然后引入自适应空间特征融合模块,融合蚕茧浅层图像信息和深层语义信息,解决ResNet41在特征提取过程中出现的信息丢失问题;最后采用挤压和激发模块抑制冗余信息,降低分类偏差。改进模型B-Res41-ASE在测试集中的分类准确率和F 1值分别为93.7%和94.9%,对上车茧的分类精确率为97.8%,对黄斑茧、柴印茧、烂茧、瘪茧、薄皮茧等下茧的分类精确率分别为96.4%、93.7%、98.6%、94.5%、93.1%,相比于改进前模型和常用的细粒度分类模型均有明显优势,且B-Res41-ASE对蚕茧的可判别区域的聚焦更精准。实验结果表明,文中提出的优化方法在分类准确率、鲁棒性等方面优于其他蚕茧分类模型,可为蚕茧智能分拣提供理论依据。 展开更多
关键词 蚕茧分类 双线性池化 自适应空间特征融合 可视化分析
在线阅读 下载PDF
运河船舶碰撞事故致因概念分析模型
11
作者 谭志荣 丁熙平 +3 位作者 王银波 马杰 张泽虎 龚凯军 《中国航海》 北大核心 2025年第S1期119-125,共7页
运河碰撞事故的发生具有随机性和不确定性,适用于泛化的事故致因概念分析模型,以制定相关的防控措施。通过专家咨询和文本挖掘提出事故致因属性集,运用形式概念分析构建运河船舶碰撞事故的致因形式背景,进而构建致因概念格。以京杭运河... 运河碰撞事故的发生具有随机性和不确定性,适用于泛化的事故致因概念分析模型,以制定相关的防控措施。通过专家咨询和文本挖掘提出事故致因属性集,运用形式概念分析构建运河船舶碰撞事故的致因形式背景,进而构建致因概念格。以京杭运河苏州城区段为特征水域,引入时空特征聚类的方法,得到2018—2022年332起碰撞事故案例的时空分布,根据碰撞事故黑点选取12起典型碰撞事故作为对象集进行模型应用。皮尔逊检验方法验证了形式概念分析在碰撞事故致因分析中的可靠性。结果表明:运河船舶碰撞事故的强关联致因是有效视距不足、早晚饭时段瞭望疏忽和航段通航秩序复杂等。 展开更多
关键词 形式概念分析 时空特征 知识发现
在线阅读 下载PDF
基于多尺度空间-光谱特征提取的颜料高光谱图像分类方法
12
作者 汤斌 罗希玲 +6 位作者 王建旭 范文奇 孙玉宇 刘家路 唐欢 赵雅 钟年丙 《光谱学与光谱分析》 北大核心 2025年第8期2364-2372,共9页
颜料不仅赋予文物色彩和美感,更承载着丰富的历史、文化与技术信息,因此对颜料的准确分类与识别是古代彩绘作品修复、保护及学术研究的重要基础。通过检测颜料的种类与化学成分,不仅能帮助确定作品的创作年代、地域特征及工艺风格,还能... 颜料不仅赋予文物色彩和美感,更承载着丰富的历史、文化与技术信息,因此对颜料的准确分类与识别是古代彩绘作品修复、保护及学术研究的重要基础。通过检测颜料的种类与化学成分,不仅能帮助确定作品的创作年代、地域特征及工艺风格,还能为科学修复提供指导依据。然而,传统颜料分析受限于样品尺寸、表面平整度,且部分分析方法需要取样,对文物造成不可逆损伤,这使得古书画颜料的检测面临诸多挑战。高光谱成像技术(HSI)凭借其无损检测、广域扫描及获取完整光谱信息的优势,成为文物颜料分析的重要工具。HSI克服了样品表面不平整、尺寸受限等问题,能够从不同波段获取细致的光谱和空间信息,帮助提取颜料的微观特征。旨在利用HSI技术实现古书画颜料的精准分类与深度特征提取,以应对复杂场景下的颜料检测挑战。为此,我们提出了一种多尺度空间-光谱特征融合的方法,在分析过程中结合不同层次的信息:利用光谱-空间注意力机制捕捉细节特征,并通过视觉转换器(ViT)模型获取图像整体的高层语义信息,从而增强对复杂颜料特征的表示能力和分类性能。实验结果表明,该方法在模拟画作样品上的分类性能显著优于传统和其他深度学习模型:与支持向量机(SVM)相比,分类精度提升了34.35%;相较于HyBridSN与SSRN模型,精度分别提高了8.93%和5.6%。本方法不仅提升了颜料检测的准确性,还为古书画的科学修复和价值保护提供了无损、可靠的技术支持,并为文物保护的智能化发展奠定了技术基础。 展开更多
关键词 高光谱成像 多尺度特征融合 Vision Transformer 光谱-空间注意力 颜料分类
在线阅读 下载PDF
中国土地发展权三十年研究进展及演进特征——基于可视化文献计量分析
13
作者 段德罡 曾洪煜 王瑾 《西部人居环境学刊》 北大核心 2025年第2期1-7,共7页
土地发展权是我国空间治理体系的重要理论工具,贯穿国土空间规划的编制、实施和管理的全过程。随着国家治理体系和治理能力现代化进入新的历史阶段,围绕土地发展权的空间治理研究引发了学界的广泛关注。为深入探讨土地发展权与空间政策... 土地发展权是我国空间治理体系的重要理论工具,贯穿国土空间规划的编制、实施和管理的全过程。随着国家治理体系和治理能力现代化进入新的历史阶段,围绕土地发展权的空间治理研究引发了学界的广泛关注。为深入探讨土地发展权与空间政策间的相互作用关系,并明晰其研究演进特征,通过信息可视化工具CiteSpace,对1994—2023年间土地发展权研究文献进行梳理,分析土地发展权研究在不同空间政策背景下的动态变化趋势。结合可视化图谱与传统的文献计量学方法,概述了中国土地发展权研究的三个主要阶段:以土地为中心的城镇化阶段;“多规合一”的空间用途管制阶段;以及强调生态治理,土地发展权逐步向中央政府收束的阶段。通过梳理既有的研究成果,总结了中国土地发展权研究的演进特征,并对国土空间规划体系下土地发展权未来的研究热点进行展望。 展开更多
关键词 土地发展权 信息可视化 空间用途管制 演进特征
在线阅读 下载PDF
联合TCN和时空多头注意机制的车辆轨迹预测模型
14
作者 宋绍剑 徐佳敏 +1 位作者 李刚 李国进 《计算机工程与应用》 北大核心 2025年第12期352-358,共7页
车辆轨迹预测为自动驾驶系统提供决策和规划的基础数据,它是自动驾驶过程的一个重要环节。然而,车辆轨迹预测过程存在复杂的空间交互性和时间相关性,给轨迹预测带来了巨大挑战。因此,提出了一种基于时空多头注意机制和时间卷积网络(temp... 车辆轨迹预测为自动驾驶系统提供决策和规划的基础数据,它是自动驾驶过程的一个重要环节。然而,车辆轨迹预测过程存在复杂的空间交互性和时间相关性,给轨迹预测带来了巨大挑战。因此,提出了一种基于时空多头注意机制和时间卷积网络(temporal convolutional network,TCN)的车辆轨迹预测模型。将门控机制和TCN结合,经过多头注意机制后进行堆叠以提取不同层次的时间特征,并分配相应的权重。将相邻车辆的历史轨迹以栅格图的形式进行卷积操作和coordinate attention(CA)操作以提取空间交互特征。预测未来不同机动意图的概率,并将其和提取到的时空特征输入到基于长短期记忆网络(long short-term memory network,LSTM)的解码器中获得未来轨迹。所提模型在下一代仿真(next generation simulation,NGSIM)数据集进行了实验评估。与4种相似模型相比,提出的模型预测误差最高降低了17.8%。 展开更多
关键词 车辆轨迹预测 自动驾驶 时空多头注意机制 时空特征
在线阅读 下载PDF
多阶段渐进处理的图像去雨方法
15
作者 廉继红 王平 +1 位作者 李英 李云红 《西北大学学报(自然科学版)》 北大核心 2025年第2期297-308,共12页
针对现有图像去雨方法中存在雨纹去除不彻底、纹理信息丢失等问题,提出一种多阶段渐进式处理的图像去雨算法,可以同时将上下阶段的特征融合,使去雨算法的性能有很大的提高。该去雨网络模型由3个阶段构成。前2个阶段采用改进后的U-Net编... 针对现有图像去雨方法中存在雨纹去除不彻底、纹理信息丢失等问题,提出一种多阶段渐进式处理的图像去雨算法,可以同时将上下阶段的特征融合,使去雨算法的性能有很大的提高。该去雨网络模型由3个阶段构成。前2个阶段采用改进后的U-Net编码器解码器结构学习多尺度上下文特征信息,特征提取部分采用有效通道注意力机制(efficient channel attention network,ECANet),使网络模型参数变小,更加轻量级;第3阶段加入并行注意力机制(parallel attention subnetwork,PASNet),在学习上下文信息和空间细节特征的同时还能生成高分辨率特征,更好地保留图像的输出细节。此外,还引入监督注意力模块(supervised attention module,SAM)以加强特征学习。实验结果表明,在数据集Rain100H上PSNR达到29.37 dB,SSIM为0.88;在Test1200上PSNR达到32.50 dB,SSIM为0.93,验证了所提方法在图像去雨任务上的有效性。 展开更多
关键词 图像去雨 特征提取 监督注意力 并行注意力机制 空间细节
在线阅读 下载PDF
自适应采样与重影多尺度特征融合的轻量化焊缝缺陷检测
16
作者 鲁斌 杨烜 +1 位作者 杨振宇 高啸天 《系统仿真学报》 北大核心 2025年第8期1978-1990,共13页
为提升焊接缺陷识别的准确率和速度,并实现模型的轻量化,提出了一种基于YOLOv8的轻量化焊缝缺陷检测网络LAW-YOLO(light adaptive-weight sampling-YOLO)。设计了一种轻量级自适应权重采样LAWS模块,通过学习感受野区域内交互的特征来构... 为提升焊接缺陷识别的准确率和速度,并实现模型的轻量化,提出了一种基于YOLOv8的轻量化焊缝缺陷检测网络LAW-YOLO(light adaptive-weight sampling-YOLO)。设计了一种轻量级自适应权重采样LAWS模块,通过学习感受野区域内交互的特征来构建自适应权重注意力特征图。采用优化的高效加权双向特征金字塔网络作为LAW-YOLO中的特征提取网络,设计重影多尺度采样模块并引用了混合注意力机制,以增强对小目标缺陷的检测能力。实验结果表明:该方法在SteelTube数据集中mAP0.5达到97.6%,处理数据速度可达91帧/s,比基线模型提高了5.5%的平均精度及4.6%的处理速度,在保持高效性能的同时减少了25.3%的计算量和50%的模型大小,更便于部署在边缘设备上进行场景作业。 展开更多
关键词 缺陷检测 YOLOv8 重影多尺度卷积 感受野空间特征 混合注意力机制
在线阅读 下载PDF
基于多尺度渐近金字塔的太阳电池缺陷检测网络
17
作者 朱磊 耿萃萃 +3 位作者 李博涛 潘杨 张博 姚丽娜 《太阳能学报》 北大核心 2025年第5期267-274,共8页
以YOLOv8网络为基础提出一种多尺度渐近金字塔网络MSANet。首先使用带有分层特征融合结构的特征提取块M-Block替换常规卷积层,以增强网络对多尺度目标的特征提取能力;其次引入空间注意力机制(SRU),抑制背景区域的特征冗余,使网络能更关... 以YOLOv8网络为基础提出一种多尺度渐近金字塔网络MSANet。首先使用带有分层特征融合结构的特征提取块M-Block替换常规卷积层,以增强网络对多尺度目标的特征提取能力;其次引入空间注意力机制(SRU),抑制背景区域的特征冗余,使网络能更关注重点区域的同时减少参数量的引入;最后提出一种改进渐近金字塔网络AFPNa结构,缓解网络在特征融合过程中信息的丢失或退化问题,提升缺陷检测精度。实验结果表明,与YOLOv8原模型及RTMDET等7种先进检测网络相比,MSANet具有更高的检测精度,相较原模型均值平均精度提升5.7个百分点。 展开更多
关键词 缺陷检测 深度学习 太阳电池 分层特征融合结构 多尺度渐近金字塔 空间注意力机制
在线阅读 下载PDF
基于全局层次化特征融合和多任务学习的异常流量检测方法
18
作者 刘会景 唐永旺 《计算机应用与软件》 北大核心 2025年第9期376-382,389,共8页
针对当前基于深度学习的方法对于网络流量表征和泛化能力方面较弱的问题,提出一种基于全局层次化特征融合和多任务学习的异常流量检测方法。该文将原始流量以会话流为单位进行切分,构建全局层次化特征融合框架,并行提取会话流空间和时... 针对当前基于深度学习的方法对于网络流量表征和泛化能力方面较弱的问题,提出一种基于全局层次化特征融合和多任务学习的异常流量检测方法。该文将原始流量以会话流为单位进行切分,构建全局层次化特征融合框架,并行提取会话流空间和时间特征进行残差融合;设计会话记录多分类为主任务,会话流多分类和会话流对是否为上下文关系为辅助任务的多任务学习框架;输入会话流对进行训练和预测。在TON_IoT数据集上验证,二分类和多分类的准确率分别为94.35%和91.96%,相较于对比方法,在准确率和精度最优时误报率较低。 展开更多
关键词 深度学习 时间特征 空间特征 层次化特征融合 多任务学习 异常流量
在线阅读 下载PDF
基于UCTransNet的建筑损害评估模型
19
作者 谢国波 张文亮 +1 位作者 何林 林志毅 《计算机工程与设计》 北大核心 2025年第1期44-51,共8页
为提高建筑损害的评估精度,提出一种基于UCTransNet的双阶段灾后建筑损害评估模型(MGDLNet)。阶段一使用UCTransNet完成建筑分割。阶段二使用改进后的DM-UCTransNet进行建筑损害评估,通过差异特征提取模块充分融合多尺度的建筑损害特征... 为提高建筑损害的评估精度,提出一种基于UCTransNet的双阶段灾后建筑损害评估模型(MGDLNet)。阶段一使用UCTransNet完成建筑分割。阶段二使用改进后的DM-UCTransNet进行建筑损害评估,通过差异特征提取模块充分融合多尺度的建筑损害特征,嵌入空间金字塔更好捕捉小目标建筑及边缘特征,引入深度监督机制和改进损失函数加强浅层特征学习并平衡样本。实验结果表明,MGDLNet在目标数据集有较大优势,其加权F1得分相较于SegNet、UNet、DeeplabV3+、TransUNet和UCTransNet分别提高了8.6%、1.9%、5.0%、2.7%和1.4%。 展开更多
关键词 建筑损害评估 UCTransNet 双阶段 差异特征 空间金字塔 深度监督 损失函数
在线阅读 下载PDF
基于间接通径-STIRPAT环境压力评价法的省域碳排放驱动因子研究
20
作者 张旭 王晓玉 +1 位作者 王晨旭 袁旭梅 《生态经济》 北大核心 2025年第11期13-19,共7页
碳排放对资源生态环境、经济高质量发展起着不容忽视的作用,在城市化进程的推动下,探讨空间区域人类活动对碳排放的影响,对制定相关政策实现碳减排目标具有重要意义。基于所提出改进的间接通径-STIRPAT环境压力评价法进行碳排放驱动因... 碳排放对资源生态环境、经济高质量发展起着不容忽视的作用,在城市化进程的推动下,探讨空间区域人类活动对碳排放的影响,对制定相关政策实现碳减排目标具有重要意义。基于所提出改进的间接通径-STIRPAT环境压力评价法进行碳排放驱动因子识别,应用莫兰指数进一步探究中国省域碳排放及其驱动因子的空间演进规律。结果显示:研究期内碳排放总量呈现增长放缓及负向走势,驱动因子中人口、经济、能源、城镇化率、第二产业、第三产业对碳排放的间接驱动作用程度高于第一产业。同时,碳排放的空间特征呈现高度集聚依赖性,相关性态势呈“先紧密后减缓”“东北部低,西南部高”的分布格局,各驱动因子莫兰指数的测算表明在高值或低值省域空间特征的跃迁波动态势明显,省际空间分异情况呈现低度波动,表现为“高值区省份包围低值区省份”逐渐减少的空间特征差异。 展开更多
关键词 碳排放 驱动因子 间接通径-STIRPAT环境压力评价法 空间特征
在线阅读 下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部