期刊文献+
共找到538篇文章
< 1 2 27 >
每页显示 20 50 100
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
1
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
Soft-output stack algorithm with lattice-reduction for MIMO detection
2
作者 Yuan Yang Hailin Zhang Junfeng Hue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期197-203,共7页
A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on t... A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods. 展开更多
关键词 multiple-input multiple-output (MIMO) soft-output de- tection lattice-reduction stack algorithm.
在线阅读 下载PDF
基于SAC的桥式起重机智能防摇控制
3
作者 唐伟强 王伟 +1 位作者 马瑞 许天鹏 《中国工程机械学报》 北大核心 2025年第3期438-443,共6页
针对桥式起重机载荷摆角抑制问题,提出了一种基于软演员评论家算法的智能防摇控制方法。以减小载荷摆角和尽快到达小车期望位置为目标设计奖励函数,采用1个动作网络,以起重机的小车位移、小车速度、负载角度和负载角速度作为动作网络输... 针对桥式起重机载荷摆角抑制问题,提出了一种基于软演员评论家算法的智能防摇控制方法。以减小载荷摆角和尽快到达小车期望位置为目标设计奖励函数,采用1个动作网络,以起重机的小车位移、小车速度、负载角度和负载角速度作为动作网络输入,驱动力作为动作网络的输出。为了提高训练过程中的稳定性,采用4个价值网络,并在价值网络中引入熵正则项和熵加权系数,用于平衡训练过程中探索和利用之间的关系。价值网络通过软更新的方式得到目标网络,从而减少了训练过程中局部最优和发散的情况。最后通过模型训练,得到用于控制的动作网络。结果表明:所提出的智能防摇控制系统对载荷摆角具有很好的抑制作用,而且对载荷质量变化、绳长参数摄动以及外部干扰具有很好的鲁棒性。与基于末端执行器广义运动方法相比,所提出的方法在起重机系统动态性能和抗干扰方面展现出一定的优势。 展开更多
关键词 桥式起重机 摆角控制 软演员评论家算法 强化学习
在线阅读 下载PDF
缓存辅助的移动边缘计算任务卸载与资源分配
4
作者 李致远 陈品润 《计算机工程与设计》 北大核心 2025年第5期1248-1255,共8页
针对边缘计算网络环境下的计算任务卸载与资源分配问题,提出一种基于分层强化学习的联合优化缓存、卸载与资源分配(HRLJCORA)算法。以时延和能耗为优化目标,将原优化问题分解为两个子问题,下层利用深度Q-learning网络算法进行缓存决策,... 针对边缘计算网络环境下的计算任务卸载与资源分配问题,提出一种基于分层强化学习的联合优化缓存、卸载与资源分配(HRLJCORA)算法。以时延和能耗为优化目标,将原优化问题分解为两个子问题,下层利用深度Q-learning网络算法进行缓存决策,上层使用软动作评价算法进行计算任务卸载与资源分配决策。仿真实验结果表明,HRLJCORA算法与现有基线算法相比,有效降低了总开销,相较于联合优化计算任务卸载与资源分配(JORA)算法,卸载决策奖励值提高了13.11%,为用户提供了更优质的服务。 展开更多
关键词 移动边缘计算 缓存辅助 卸载决策 资源分配 分层强化学习 深度Q-learning网络算法 软动作评价算法
在线阅读 下载PDF
光照不均匀条件下无人机航拍低照度图像增强方法 被引量:1
5
作者 黄静 欧余韬 《现代电子技术》 北大核心 2025年第1期55-59,共5页
增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过... 增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过小波分解得到图像的高频参数和低频参数,分别通过双边滤波算法、软阈值方法和直方图对图像的低频参数和高频参数进行增强,采用小波重构对增强后的图像高频参数和低频参数进行重构,得到增强后的无人机航拍图像。通过实验验证,该方法能够实现一种效果较好的图像增强,在原始图像基础上,通过文中方法增强原始亮度8.14%、对比度提高了37.90%以及清晰度增加了31.01%,使得图像的整体质量得到了显著提升,为后续的图像分析、处理提供了更加准确、丰富的信息。 展开更多
关键词 无人机航拍 低照度图像增强 高斯滤波 小波分解与重构 双边滤波算法 软阈值方法
在线阅读 下载PDF
基于变量选择和POA-NARX的SNCR脱硝系统出口NO_(x)浓度动态软测量模型
6
作者 赵征 梁磊 刘赛恒 《动力工程学报》 北大核心 2025年第4期592-601,共10页
针对垃圾焚烧炉选择性非催化还原(SNCR)脱硝系统内部工况不稳定、影响出口NO_(x)浓度因素多以及无法及时准确测量出口NO_(x)浓度等问题,提出了一种基于变量选择和鹈鹕优化算法-非线性自回归(POA-NARX)的SNCR脱硝系统出口NO_(x)浓度动态... 针对垃圾焚烧炉选择性非催化还原(SNCR)脱硝系统内部工况不稳定、影响出口NO_(x)浓度因素多以及无法及时准确测量出口NO_(x)浓度等问题,提出了一种基于变量选择和鹈鹕优化算法-非线性自回归(POA-NARX)的SNCR脱硝系统出口NO_(x)浓度动态软测量模型。通过机理分析SNCR脱硝系统出口NO_(x)浓度的影响因素,初筛特征变量;利用改进的快速相关过滤(FCBF)算法选择高相关变量,去除强冗余的变量;再利用数据趋势分析法和互信息算法进行迟延估计;最后利用鹈鹕优化算法确定最佳系统变量阶次,建立SNCR脱硝系统出口NO_(x)浓度动态软测量模型。实验结果表明:经过变量筛选和时滞分析的NARX动态模型准确性显著提升;POA-NARX模型的预测效果明显优于其他他软测量模型。 展开更多
关键词 垃圾焚烧炉 SNCR 快速相关过滤算法 NARX神经网络 鹈鹕优化算法 软测量
在线阅读 下载PDF
基于TLF-YOLOv8的堆叠垃圾实例分割算法
7
作者 李利 梁晶 +2 位作者 陈旭东 潘红光 寇发荣 《科学技术与工程》 北大核心 2025年第5期2009-2018,共10页
相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的... 相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的实例分割算法。首先,在数据预处理部分进行特征数据分层,并通过双层图卷积网络(graph convolutions network,GCN)实现双分支特征融合,减弱堆叠情况对被遮挡物体特征的影响,从而解决复杂堆叠遮挡下的实例分割问题。同时,为了解决同类待测物体易混淆的问题,融入了软阈值化非极大值抑制算法和新的交并比算法。最后,根据应用场景和数据集的复杂性,优化了主干网络部分的特征提取模块,并在主干网络部分引入了多尺度注意力机制,有效提高了模型的检测性能。实验使用遮挡垃圾分类实例分割数据集,实验结果表明该方法的平均准确率、交并比阈值为0.5时的平均准确率(AP_(50))、交并比为0.5~0.95时的平均准确率(AP_(50~95))等指标较之前的其他方法更优。相较于原YOLOv8算法,检测AP_(50)提高了7.9%,分割AP_(50)提高了5.4%,具有更好的检测和分割效果。 展开更多
关键词 垃圾堆叠 双层特征解耦融合 YOLOv8算法 软阈值化非极大值抑制 动态非单调聚焦机制 期望最大化注意力
在线阅读 下载PDF
基于VMD-Bayes-Lasso算法带误差补偿的火电厂NO_(x)浓度软测量
8
作者 金秀章 乔鹏 史德金 《华北电力大学学报(自然科学版)》 北大核心 2025年第3期117-124,142,共9页
针对燃煤电厂中选择性催化还原(Selective Catalytic Reduction,SCR)脱硝系统入口NO_(x)浓度的测量传感器迟延大,不能准确反映其浓度的实时变化的问题,提出了利用Copula熵(Copula entropy,CE)筛选与入口NO_(x)浓度软测量相关的辅助变量... 针对燃煤电厂中选择性催化还原(Selective Catalytic Reduction,SCR)脱硝系统入口NO_(x)浓度的测量传感器迟延大,不能准确反映其浓度的实时变化的问题,提出了利用Copula熵(Copula entropy,CE)筛选与入口NO_(x)浓度软测量相关的辅助变量,利用变模态分解(Variational Mode Decomposition,VMD),将入口NO_(x)浓度分解为不同中心频率的子序列信号,建模充分拟合目标变量的数据特征。采用二级建模方法,第一级,将分解后得到的入口NO_(x)浓度子序列信号分别利用贝叶斯回归算法(Bayesian Regression,Bayes)进行训练并预测,叠加得到完整的预测结果,第二级,对训练中产生的验证集误差值利用Lasso算法建立误差预测模型,得到测试集预测误差的预测值,并与第一级模型得到完整预测结果叠加,实现误差补偿,提升模型预测精度。其中,Bayes及Lasso网络超参数利用天牛群算法进行自动寻优;仿真结果显示,VMD分解并带误差补偿模型对比未经VMD分解带误差补偿模型,Bayes及Lasso单一模型的均方根误差、平均绝对误差、平均绝对百分比误差最小,能够实现对入口NO_(x)浓度的准确软测量。 展开更多
关键词 入口NO_(x)浓度建模 变模态分解 误差修正 软测量 天牛群优化算法
在线阅读 下载PDF
面向OFDM-NOMA系统的自适应多模盲均衡方案
9
作者 杨龙 余凯欣 +1 位作者 李进 贾子一 《电子与信息学报》 北大核心 2025年第8期2509-2520,共12页
面向基于正交频分复用的非正交多址接入(NOMA)系统,针对下行链路中非规则星座点均衡困难的问题,该文提出了一种无监督的多模盲均衡方案。该方案联合软决策导向算法,通过结合NOMA功率分配因子,构建指数型代价函数,有效补偿了信道引起的... 面向基于正交频分复用的非正交多址接入(NOMA)系统,针对下行链路中非规则星座点均衡困难的问题,该文提出了一种无监督的多模盲均衡方案。该方案联合软决策导向算法,通过结合NOMA功率分配因子,构建指数型代价函数,有效补偿了信道引起的幅度和相位失真。为了最小化代价函数,提出了一种改进的牛顿算法,以快速搜索最优权值。仿真结果表明,相比传统多模均衡算法,所提出的算法稳态最大失真降低了约10倍。此外,在GNURadio平台上搭建软件无线电系统,验证了算法的有效性和可实现性。 展开更多
关键词 正交频分复用 非正交多址接入 盲均衡 多模算法 软决策导向
在线阅读 下载PDF
基于双网络双服务器架构的碱回收智能控制系统及优化方法
10
作者 汤伟 郑晓虎 +3 位作者 王孟效 王其林 周国庆 高启帆 《中国造纸》 北大核心 2025年第2期16-25,86,共11页
目前,大部分制浆造纸厂的减排脱碳效果不佳,信息化水平较低。本研究以碱回收工段为例,提出了基于双网络双服务器架构的碱回收智能控制系统。该系统基于双环以太网双冗余服务器架构,下位机选用西门子S7-400系列PLC控制器,CPU和I/O模块等... 目前,大部分制浆造纸厂的减排脱碳效果不佳,信息化水平较低。本研究以碱回收工段为例,提出了基于双网络双服务器架构的碱回收智能控制系统。该系统基于双环以太网双冗余服务器架构,下位机选用西门子S7-400系列PLC控制器,CPU和I/O模块等硬件均采用冗余设计,对碱回收蒸发、燃烧和苛化工段进行稳定可靠的分散控制;上位机配备Web服务器、企业办公互联网和远程服务通道,不仅可以增强系统内部的信息共享能力,还可实现对系统的远程诊断与维护;最后,采用高级控制算法对各工段的重要参数进行优化控制。实际应用结果表明,该系统不仅可有效提升黑液的处理效率,还可以减少生产过程的能量损失,并为碱回收工段智能化和信息化转型升级提供依据。 展开更多
关键词 碱回收工艺流程 双网络双服务器架构 高级控制算法 软测量 粒子群优化
在线阅读 下载PDF
考虑进站策略的网联电动公交车节能驾驶优化研究
11
作者 南斯睿 于谦 +2 位作者 李铁柱 尚赞娣 陈海波 《交通运输系统工程与信息》 北大核心 2025年第2期82-94,共13页
针对公交车在进出站和信号交叉口高能耗的问题,本文提出一种考虑进站策略的节能驾驶优化方法。首先,基于利用城市交通能力仿真(Simulation of Urban Mobility, SUMO)平台搭建智能网联场景,构建能够反映能耗、行驶效率和安全性的强化学... 针对公交车在进出站和信号交叉口高能耗的问题,本文提出一种考虑进站策略的节能驾驶优化方法。首先,基于利用城市交通能力仿真(Simulation of Urban Mobility, SUMO)平台搭建智能网联场景,构建能够反映能耗、行驶效率和安全性的强化学习复合奖励函数;其次,将进站策略和预设交通规则作为约束集成于柔性演员-评论家(Soft Actor-Critic, SAC)深度强化学习框架中,优化车辆进出站及接近信号交叉口的轨迹;最后,以实际行驶、基于深度Q网络(Deep Q-Network, DQN)算法常规、基于SAC算法、基于规则约束和DQN算法(DQN-ruled)的优化方法作为基准方案,与本文提出的基于规则约束和SAC算法(SAC-ruled)的优化方法进行对比。结果表明:通过SAC-ruled算法优化后的驾驶轨迹在多种场景下均优于基准方案。在跟驰运动中,与基准方案相比,所设计的节能驾驶优化方法较基准方案的车辆能耗最高减少35.97%,行驶时间提升21.67%;在换道运动中,车辆能耗最多可降低41.40%,行驶时间提升16.94%。此外,通过敏感性分析验证,本文提出的基于SAC-ruled算法的节能驾驶优化方法在应对车流量波动方面表现出更强的适应性。本文建立的节能驾驶优化模型可集成节能辅助驾驶系统,鼓励驾驶员主动节能。 展开更多
关键词 智能交通 节能驾驶优化 深度强化学习 纯电动公交 柔性演员-评论家算法
在线阅读 下载PDF
LoRa网络中基于深度强化学习的信息年龄优化
12
作者 程克非 陈彩蝶 +1 位作者 罗佳 陈前斌 《电子与信息学报》 北大核心 2025年第2期541-550,共10页
信息年龄(AoI)是信息新鲜度的衡量指标,针对时间敏感的物联网,最小化AoI显得尤为重要。该文基于LoRa网络的智能交通环境,分析Slot-Aloha协议下的AoI优化策略,建立了Slot-Aloha协议下数据包之间传输碰撞和等待时间的系统模型。通过分析指... 信息年龄(AoI)是信息新鲜度的衡量指标,针对时间敏感的物联网,最小化AoI显得尤为重要。该文基于LoRa网络的智能交通环境,分析Slot-Aloha协议下的AoI优化策略,建立了Slot-Aloha协议下数据包之间传输碰撞和等待时间的系统模型。通过分析指出,在LoRa上行传输过程中,随着数据包数量增多,AoI主要受到数据包碰撞影响。为克服优化问题中动作空间过大导致难以实现有效求解的问题,该文采用连续动作空间映射离散动作空间的方式,使用柔性动作-评价(SAC)算法对LoRa网络下的AoI进行优化。仿真结果显示,SAC算法优于传统算法与传统深度强化学习算法,可有效降低网络的平均AoI。 展开更多
关键词 信息年龄 LoRa 柔性动作-评价算法 深度强化学习 优化策略
在线阅读 下载PDF
考虑交通流的柔性互联配电网电动汽车承载能力计算方法 被引量:1
13
作者 曹佳晨 张沈习 +3 位作者 张璐 刘文亮 曹毅 梁宇 《电力系统自动化》 北大核心 2025年第5期24-37,共14页
交通流的时空变化会导致电动汽车充电需求分布发生改变,进而影响配电网电动汽车承载能力。为了精细化考虑交通流的影响,提出了计及交通流的柔性互联配电网(FIDN)电动汽车承载能力计算方法。该方法考虑智能软开关的灵活可调能力,以降低... 交通流的时空变化会导致电动汽车充电需求分布发生改变,进而影响配电网电动汽车承载能力。为了精细化考虑交通流的影响,提出了计及交通流的柔性互联配电网(FIDN)电动汽车承载能力计算方法。该方法考虑智能软开关的灵活可调能力,以降低电动汽车规模化接入对配电网的冲击。首先,基于半动态交通流模型,综合考虑多种电动汽车接入模式,建立电动汽车调控模型;其次,计及交通流影响下的电动汽车调控措施,以能够承载的电动汽车数量最大为目标,提出考虑交通流的FIDN电动汽车承载能力计算模型;然后,通过二次凸包络松弛方法、大M法、二阶锥松弛方法等实现模型转化,并提出嵌套收紧松弛算法对模型进行求解,以减小松弛间隙;最后,在改进的标准算例及福建省某实际算例中进行测试分析,验证了所提模型和算法的有效性。 展开更多
关键词 柔性互联 配电网 电动汽车 承载能力 交通流 嵌套收紧松弛算法 智能软开关
在线阅读 下载PDF
超奈奎斯特水声通信稀疏自适应自迭代均衡算法
14
作者 褚润聪 武岩波 +2 位作者 朱敏 徐锐 寇旭 《哈尔滨工程大学学报》 北大核心 2025年第6期1187-1196,共10页
针对超奈奎斯特水声通信中的符号间干扰问题,本文提出基于数据重用改进比例递归最小二乘的稀疏自适应自迭代均衡算法,在软均衡器自迭代中更新均衡器系数和后验软判决符号,并根据超奈奎斯特信号加速因子调整算法稀疏度,在正交相移键控和... 针对超奈奎斯特水声通信中的符号间干扰问题,本文提出基于数据重用改进比例递归最小二乘的稀疏自适应自迭代均衡算法,在软均衡器自迭代中更新均衡器系数和后验软判决符号,并根据超奈奎斯特信号加速因子调整算法稀疏度,在正交相移键控和八相移键控调制下给出稀疏度因子和加速因子的拟合关系。仿真和试验证明:该算法具有更优的均衡性能和收敛速度,在距离为10 km的浅海水平通信海试中,实现了频谱效率为2.14 bits/(s·Hz)的超奈奎斯特信号无错误译码传输。 展开更多
关键词 水声通信 超奈奎斯特 Farrow滤波器 TURBO均衡 软译码器 软均衡器 自适应算法 改进成比例递归最小二乘 数据重用
在线阅读 下载PDF
加热卷烟雾化基材在线生产中水分、丙二醇、甘油、烟碱的快速测定
15
作者 祝浩 李蓓蓓 +3 位作者 郭军伟 刘雨 张璟 黄龙 《中国烟草学报》 北大核心 2025年第3期23-30,共8页
【目的】监控加热卷烟雾化基材生产中的质量稳定性,建立快速、同时测定加热卷烟雾化基材中水分、丙二醇、甘油和烟碱含量的近红外分析方法。【方法】采用自举软收缩(Bootstrapping soft shrinkage approach,BOSS)变量选择方法筛选特征... 【目的】监控加热卷烟雾化基材生产中的质量稳定性,建立快速、同时测定加热卷烟雾化基材中水分、丙二醇、甘油和烟碱含量的近红外分析方法。【方法】采用自举软收缩(Bootstrapping soft shrinkage approach,BOSS)变量选择方法筛选特征波长变量,结合偏最小二乘法(Partial least squares,PLS)分别建立片状、丝状加热卷烟雾化基材中4种化学成分近红外含量预测模型,并与其他变量选择方法进行对比。【结果】(1)基于BOSS算法优选波长变量所建立的模型预测精度最优,模型R2均大于0.95,RMSECV(Root mean square error of cross-validation,交叉验证均方根误差)均小于0.7%。(2)水分、丙二醇、甘油和烟碱的RMSEP(Root mean square error of cross-prediction,交叉预测均方根误差)均小于0.75%,且验证集RMSEP与建模集RMSECV值相近,各模型均具有较好的预测准确性。(3)各成分模型RSD(Relative standard deviation,相对标准偏差)均小于2%,模型重现性较好。 展开更多
关键词 加热卷烟雾化基材 近红外光谱 变量选择 自举软收缩算法
在线阅读 下载PDF
快速特征金字塔和Soft-Cascade在折角塞门图像故障检测中的应用 被引量:1
16
作者 孙国栋 林凯 +2 位作者 高媛 张杨 赵大兴 《机械科学与技术》 CSCD 北大核心 2019年第6期947-952,共6页
为了提升列车折角塞门的故障检测效率,提出了一种基于快速特征金字塔和Soft-Cascade的故障图像检测算法。首先,构建快速特征金字塔模型来提取图像多尺度聚合通道特征;其次,利用向量化后的多尺度聚合通道特征来训练Soft-Cascade故障分类... 为了提升列车折角塞门的故障检测效率,提出了一种基于快速特征金字塔和Soft-Cascade的故障图像检测算法。首先,构建快速特征金字塔模型来提取图像多尺度聚合通道特征;其次,利用向量化后的多尺度聚合通道特征来训练Soft-Cascade故障分类器;最后,利用训练好的分类器来判断待检折角塞门是否含有故障。实验结果表明:该算法的故障检测正确率为97.33%,离线检测速度高达43fps(每张图像仅需23ms),检测效率高于其他算法。该算法训练时间短,检测速度快,硬件要求低,能满足列车折角塞门的故障检测要求。 展开更多
关键词 机器视觉 折角塞门 快速特征金字塔 soft-Cascade算法
在线阅读 下载PDF
基于WOA-Elman神经网络的城市固废焚烧炉主蒸汽流量软测量 被引量:1
17
作者 梁伟平 薛文雅 +2 位作者 马靖宁 陈联宏 许洪滨 《控制工程》 北大核心 2025年第2期201-207,共7页
主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,... 主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,根据相关性分析筛选相关变量;再通过WOA优化Elman神经网络参数;最后,建立WOA-Elman神经网络主蒸汽流量软测量模型。结果表明,与其他经典软测量模型相比,建立的WOA-Elman神经网络软测量模型准确度更高,误差更小,能够有效地应用于主蒸汽流量软测量中。 展开更多
关键词 垃圾焚烧炉 主蒸汽流量 软测量 ELMAN神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于SQP算法的双有源桥变换器的电流有效值优化控制策略
18
作者 吴凡煜 刘沈全 +2 位作者 龚厉川 曾德辉 王钢 《广东电力》 北大核心 2025年第1期83-90,共8页
双有源桥变换器在输入、输出电压不匹配时,内部会产生可观的回流功率,并伴随着变压器原、副边电流的显著增加,导致效率下降。对此,基于双重移相调制方法,研究双有源桥在电压不匹配情况下的传输效率问题,针对复杂的非线性电流有效值数学... 双有源桥变换器在输入、输出电压不匹配时,内部会产生可观的回流功率,并伴随着变压器原、副边电流的显著增加,导致效率下降。对此,基于双重移相调制方法,研究双有源桥在电压不匹配情况下的传输效率问题,针对复杂的非线性电流有效值数学模型,提出基于序列二次规划(sequential quadratic programming,SQP)算法的双有源桥变换器电感电流有效值优化方法,可通过降低电感电流有效值提升双有源桥的运行效率。首先,建立双有源桥变换器关于电感电流有效值的数学模型;接着,分析双重移相下的软开关特性,并结合双有源桥的边界工况及拓扑参数,明确约束条件,基于SQP算法求解电感电流有效值最低时的移相比组合参数;最后,在Simulink上搭建仿真算例,在电压几乎匹配和电压严重不匹配的工况下完成仿真实验并与其他控制策略进行对比。实验结果表明:相比于单移相调制,电流有效值可降低11.5%;相比于电流应力、回流功率的优化,电流有效值优化分别可提升0.76、0.92百分点的效率。这验证了理论分析的正确性与所提策略的有效性。 展开更多
关键词 双有源桥 电流有效值 序列二次规划算法 软开关 双重移相
在线阅读 下载PDF
一种旋转变压器实验平台的设计与实现
19
作者 许军 吴彦 +1 位作者 刘银报 肖文远 《中国矿业》 北大核心 2025年第S1期230-237,共8页
旋转变压器是一种电磁角度传感器,将转子角度转换为正弦信号和余弦信号。旋转变压器结构简单牢固,抗干扰能力强,因此,旋转变压器已被广泛应用于电动汽车、伺服驱动器、永磁电机等众多领域。本文介绍了旋转变压器国内外研究现状,常见的... 旋转变压器是一种电磁角度传感器,将转子角度转换为正弦信号和余弦信号。旋转变压器结构简单牢固,抗干扰能力强,因此,旋转变压器已被广泛应用于电动汽车、伺服驱动器、永磁电机等众多领域。本文介绍了旋转变压器国内外研究现状,常见的两种旋转变压器解算角度的方法。鉴于实验和测试的需要,提出了旋转变压器实验平台的设计。通过对比高精度编码器与实验旋转变压器解码的输出值来评估旋转变压器解码算法的可行性、误差分析等。最后,简述了永磁电机控制模块、驱动板、电机控制策略等的设计。旋转变压器实验平台的设计为验证旋转变压器的解码算法、精度测量、误差分析提供了便利,加快了旋转变压器的应用和研发速度。 展开更多
关键词 旋转变压器 软解码算法 实验平台 电机控制策略 解码算法
在线阅读 下载PDF
基于改进YOLOv4-tiny的安全标志检测
20
作者 赵重保 叶亭君 +4 位作者 费斐 康士明 赵雷 王瑶涵 宋泽阳 《中国安全生产科学技术》 北大核心 2025年第6期149-158,共10页
为有效实现高效安全标志检测和对不安全行为预警,基于深度学习YOLOv4-tiny模型引入ECANet注意力机制,结合Soft-NMS算法提出1种用于检测安全标志的模型。模型中数据集包含2000个安全标志,其中训练集1620张、验证集180张和测试集200张。... 为有效实现高效安全标志检测和对不安全行为预警,基于深度学习YOLOv4-tiny模型引入ECANet注意力机制,结合Soft-NMS算法提出1种用于检测安全标志的模型。模型中数据集包含2000个安全标志,其中训练集1620张、验证集180张和测试集200张。研究结果表明:该模型的检测精度达到97.76%,比YOLOv4-tiny和Faster RCNN卷积神经网络算法分别提高了7.55百分点和9.23百分点;改进的模型可避免YOLOv4-tiny和Faster RCNN卷积神经网络算法中出现的过拟合现象,泛化性能更好,在检测小目标区域和弱光条件下目标时,改进模型优势更加突出。研究结果可为施工场地安全标志的智能化监控与风险预警提供技术参考。 展开更多
关键词 安全标志检测 计算机视觉 YOLOv4-tiny 注意力机制 soft-NMS算法
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部