基于同位加速度传感/压电驱动的反馈方法,对用扬声器进行声激励的四面固支铝板开展多模态振动主动控制研究。根据实验模态分析的结果,确定了传感和驱动的位置。经过压电片传感/压电片驱动和加速度传感/压电片驱动两种方案的对比,选择了...基于同位加速度传感/压电驱动的反馈方法,对用扬声器进行声激励的四面固支铝板开展多模态振动主动控制研究。根据实验模态分析的结果,确定了传感和驱动的位置。经过压电片传感/压电片驱动和加速度传感/压电片驱动两种方案的对比,选择了能观性和能控性较好的加速度传感方式。在正位置反馈控制律(positive position feedback,简称PPF)的基础上,以加速度信号进行反馈控制律的设计,提出基于加速度负反馈控制方案(negative acceleration feedback,简称NAF),并对其进行稳定性和控制机理分析。控制时以加速度信号作为评价指标,对64和158Hz两个模态分别进行单模态和多模态控制。结果表明,基于加速度的反馈控制可以大幅度降低铝板的振动,最大控制效果可达11dB,远大于PPF的控制效果,对单模态和多模态均能实现有效的振动控制。展开更多
当前自适应滤波前馈控制方法中具有代表性的是滤波-X最小均方(filtered-X least mean square,简称FXLMS)算法,它通常假定干扰源可测且作为前馈控制器的参考输入,但实际振动控制过程中需要考虑控制输出反馈信号对参考信号的影响,因此滤...当前自适应滤波前馈控制方法中具有代表性的是滤波-X最小均方(filtered-X least mean square,简称FXLMS)算法,它通常假定干扰源可测且作为前馈控制器的参考输入,但实际振动控制过程中需要考虑控制输出反馈信号对参考信号的影响,因此滤波-X算法面向实际应用具有较大的局限性。针对这一问题,以机敏压电太阳能帆板结构为模拟试验对象,提出一种基于IIR(infinite impulse response,简称IIR)结构的滤波-U最小均方(filtered-U least mean square,简称FULMS)自适应滤波控制方法,着重分析了控制器结构设计、FULMS算法推理过程、试验模型结构设计、试验平台的构建及其试验验证等环节。经过与FXLMS算法对比仿真试验,笔者所设计的控制算法控制效果良好。将其进行试验验证分析,结果表明,所采用的控制器设计方法与控制算法收敛速度快,控制效果好,为自适应振动控制方法向实际工程应用提供了较好的研究基础。展开更多
文摘基于同位加速度传感/压电驱动的反馈方法,对用扬声器进行声激励的四面固支铝板开展多模态振动主动控制研究。根据实验模态分析的结果,确定了传感和驱动的位置。经过压电片传感/压电片驱动和加速度传感/压电片驱动两种方案的对比,选择了能观性和能控性较好的加速度传感方式。在正位置反馈控制律(positive position feedback,简称PPF)的基础上,以加速度信号进行反馈控制律的设计,提出基于加速度负反馈控制方案(negative acceleration feedback,简称NAF),并对其进行稳定性和控制机理分析。控制时以加速度信号作为评价指标,对64和158Hz两个模态分别进行单模态和多模态控制。结果表明,基于加速度的反馈控制可以大幅度降低铝板的振动,最大控制效果可达11dB,远大于PPF的控制效果,对单模态和多模态均能实现有效的振动控制。
文摘当前自适应滤波前馈控制方法中具有代表性的是滤波-X最小均方(filtered-X least mean square,简称FXLMS)算法,它通常假定干扰源可测且作为前馈控制器的参考输入,但实际振动控制过程中需要考虑控制输出反馈信号对参考信号的影响,因此滤波-X算法面向实际应用具有较大的局限性。针对这一问题,以机敏压电太阳能帆板结构为模拟试验对象,提出一种基于IIR(infinite impulse response,简称IIR)结构的滤波-U最小均方(filtered-U least mean square,简称FULMS)自适应滤波控制方法,着重分析了控制器结构设计、FULMS算法推理过程、试验模型结构设计、试验平台的构建及其试验验证等环节。经过与FXLMS算法对比仿真试验,笔者所设计的控制算法控制效果良好。将其进行试验验证分析,结果表明,所采用的控制器设计方法与控制算法收敛速度快,控制效果好,为自适应振动控制方法向实际工程应用提供了较好的研究基础。