The YOLOv8 model faces challenges with dense target distribution and small size,resulting in lower accuracy in dense small target detection.To address these issues,an improved small target detection algorithm based on...The YOLOv8 model faces challenges with dense target distribution and small size,resulting in lower accuracy in dense small target detection.To address these issues,an improved small target detection algorithm based on the YOLOv8 model was proposed in this paper.Firstly,the Global Attention Module(GAM)was introduced to enhance data prediction capability and model expression ability.Secondly,the Space-to-Depth(SPD)module was incorporated into the backbone network for fine-grained feature information learning to mitigate feature information loss due to down-sampling.Finally,a 160 pixels×160 pixels feature layer was added to expand small target feature information and effectively reduce instances of missed targets.Experimental validation on the public VisDrone2019 UAV small target detaset demonstrated that the proposed model achieves significant performance improvement in small target detection tasks compared to existing models,exhibiting higher accuracy.展开更多
Oral squamous cell carcinoma(OSCC)is the most common head and neck malignancy worldwide,accounting for more than 90%of all oral cancers,and is characterized by high invasiveness and poor long-term prognosis.Its etiolo...Oral squamous cell carcinoma(OSCC)is the most common head and neck malignancy worldwide,accounting for more than 90%of all oral cancers,and is characterized by high invasiveness and poor long-term prognosis.Its etiology is multifactorial,involving tobacco use,alcohol consumption,and human papillomavirus(HPV)infection.Oral leukoplakia and erythroplakia are the main precancerous lesions lesions,with oral leukoplakia being the most common.Both OSCC and premalignant lesions are closely associated with aberrant activation of multiple signaling pathways.Post-translational modifications(such as ubiquitination and deubiquitination)play key roles in regulating these pathways by controlling protein stability and activity.Growing evidence indicates that dysregulated ubiquitination/deubiquitination can mediate OSCC initiation and progression via aberrant activation of signaling pathways.The ubiquitination/deubiquitination process mainly involves E3 ligases(E3s)that catalyze substrate ubiquitination,deubiquitinating enzymes(DUBs)that remove ubiquitin chains,and the 26S proteasome complex that degrades ubiquitinated substrates.Abnormal expression or mutation of E3s and DUBs can lead to altered stability of critical tumorrelated proteins,thereby driving OSCC initiation and progression.Therefore,understanding the aberrantly activated signaling pathways in OSCC and the ubiquitination/deubiquitination mechanisms within these pathways will help elucidate the molecular mechanisms and improve OSCC treatment by targeting relevant components.Here,we summarize four aberrantly activated signaling pathways in OSCC―the PI3K/AKT/mTOR pathway,Wnt/β-catenin pathway,Hippo pathway,and canonical NF-κB pathway―and systematically review the regulatory mechanisms of ubiquitination/deubiquitination within these pathways,along with potential drug targets.PI3K/AKT/mTOR pathway is aberrantly activated in approximately 70%of OSCC cases.It is modulated by E3s(e.g.,FBXW7 and NEDD4)and DUBs(e.g.,USP7 and USP10):FBXW7 and USP10 inhibit signaling,while NEDD4 and USP7 potentiate it.Aberrant activation of the Wnt/β-catenin pathway leads toβ-catenin nuclear translocation and induction of cell proliferation.This pathway is modulated by E3s(e.g.,c-Cbl and RNF43)and DUBs(e.g.,USP9X and USP20):c-Cbl and RNF43 inhibit signaling,while USP9X and USP20 potentiate it.Hippo pathway inactivation permits YAP/TAZ to enter the nucleus and promotes cancer cell metastasis.This pathway is modulated by E3s(e.g.,CRL4^(DCAF1) and SIAH2)and DUBs(e.g.,USP1 and USP21):CRL4^(DCAF1) and SIAH2 inhibit signaling,while USP1 and USP21 potentiate it.Persistent activation of the canonical NF-κB pathway is associated with an inflammatory microenvironment and chemotherapy resistance.This pathway is modulated by E3s(e.g.,TRAF6 and LUBAC)and DUBs(e.g.,A20 and CYLD):A20 and CYLD inhibit signaling,while TRAF6 and LUBAC potentiate it.Targeting these E3s and DUBs provides directions for OSCC drug research.Small-molecule inhibitors such as YCH2823(a USP7 inhibitor),GSK2643943A(a USP20 inhibitor),and HOIPIN-8(a LUBAC inhibitor)have shown promising antitumor activity in preclinical models;PROTAC molecules,by binding to surface sites of target proteins and recruiting E3s,achieve targeted ubiquitination and degradation of proteins insensitive to small-molecule inhibitors,for example,PU7-1-mediated USP7 degradation,offering new strategies to overcome traditional drug limitations.Currently,NX-1607(a Cbl-b inhibitor)has entered phase I clinical trials,with preliminary results confirming its safety and antitumor activity.Future research on aberrant E3s and DUBs in OSCC and the development of highly specific inhibitors will be of great significance for OSCC precision therapy.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of stren...An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This pap...Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.展开更多
A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develo...A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ab...Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.展开更多
This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters wh...This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters while achieving multi-objective cooperative control for target fencing,network connectivity preservation,collision avoidance,and communication efficiency optimization.Firstly,a differential state observer is constructed to obtain the target's unmeasurable states.Secondly,leveraging swarm selforganization principles,a geometric-constraint-free distributed fencing controller is designed by integrating potential field methods with consensus theory.The controller dynamically adjusts inter-UAV distances via single potential function,enabling coordinated optimization of persistent network connectivity and collision-free motion during target fencing.Thirdly,a dual-threshold ETC mechanism based on velocity consensus deviation and fencing error is proposed,which can be triggered based on task features to dynamically adjust the communication frequency,significantly reduce the communication burden and exclude Zeno behavior.Theoretical analysis demonstrates the stability of closed-loop systems.Multi-scenario simulations show that the proposed method can achieve robust fencing under target maneuverability,partial UAV failures,and communication disturbances.展开更多
In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-...In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-view (FOV) constraints based on biased proportional navigation guidance (PNG) is developed in this paper. The remaining flight time (time-to-go) estimation method is derived considering aerodynamic force and gravity. The number of differential equations is reduced and the integration step is increased by changing the integral variable, which makes it possible to obtain time-to-go through integration. An impact time controller with FOV constraints is proposed by analyzing the influence of the biased term on time-to-go and FOV constraint. Then, numerical simulations are performed to verify the correctness and superiority of the method.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance...In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments.展开更多
Fisheries management worldwide struggles to strike a balance between protecting resources,ensuring fair access to resources and promoting economic effectiveness and stability.The transition to a participatory democrac...Fisheries management worldwide struggles to strike a balance between protecting resources,ensuring fair access to resources and promoting economic effectiveness and stability.The transition to a participatory democracy in South Africa in 1994 resulted in the transformation of government institutions and an extensive process of legislative reform regarding展开更多
Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physi...Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physical characteristics(wavelength and polarization)under different illuminations.A valid fusion strategy is proposed via integrating two separate detection results on color and polarization images.Moreover,a local enhancement and recognition module(LER)is introduced to boost the performance.Based on our built dataset,experimental results show that our method achieves mAPof 87.76%,and12.37%higher than that of color image and 14.68%higher than that of polarization image.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as bioch...Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.展开更多
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod...This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.展开更多
文摘The YOLOv8 model faces challenges with dense target distribution and small size,resulting in lower accuracy in dense small target detection.To address these issues,an improved small target detection algorithm based on the YOLOv8 model was proposed in this paper.Firstly,the Global Attention Module(GAM)was introduced to enhance data prediction capability and model expression ability.Secondly,the Space-to-Depth(SPD)module was incorporated into the backbone network for fine-grained feature information learning to mitigate feature information loss due to down-sampling.Finally,a 160 pixels×160 pixels feature layer was added to expand small target feature information and effectively reduce instances of missed targets.Experimental validation on the public VisDrone2019 UAV small target detaset demonstrated that the proposed model achieves significant performance improvement in small target detection tasks compared to existing models,exhibiting higher accuracy.
文摘Oral squamous cell carcinoma(OSCC)is the most common head and neck malignancy worldwide,accounting for more than 90%of all oral cancers,and is characterized by high invasiveness and poor long-term prognosis.Its etiology is multifactorial,involving tobacco use,alcohol consumption,and human papillomavirus(HPV)infection.Oral leukoplakia and erythroplakia are the main precancerous lesions lesions,with oral leukoplakia being the most common.Both OSCC and premalignant lesions are closely associated with aberrant activation of multiple signaling pathways.Post-translational modifications(such as ubiquitination and deubiquitination)play key roles in regulating these pathways by controlling protein stability and activity.Growing evidence indicates that dysregulated ubiquitination/deubiquitination can mediate OSCC initiation and progression via aberrant activation of signaling pathways.The ubiquitination/deubiquitination process mainly involves E3 ligases(E3s)that catalyze substrate ubiquitination,deubiquitinating enzymes(DUBs)that remove ubiquitin chains,and the 26S proteasome complex that degrades ubiquitinated substrates.Abnormal expression or mutation of E3s and DUBs can lead to altered stability of critical tumorrelated proteins,thereby driving OSCC initiation and progression.Therefore,understanding the aberrantly activated signaling pathways in OSCC and the ubiquitination/deubiquitination mechanisms within these pathways will help elucidate the molecular mechanisms and improve OSCC treatment by targeting relevant components.Here,we summarize four aberrantly activated signaling pathways in OSCC―the PI3K/AKT/mTOR pathway,Wnt/β-catenin pathway,Hippo pathway,and canonical NF-κB pathway―and systematically review the regulatory mechanisms of ubiquitination/deubiquitination within these pathways,along with potential drug targets.PI3K/AKT/mTOR pathway is aberrantly activated in approximately 70%of OSCC cases.It is modulated by E3s(e.g.,FBXW7 and NEDD4)and DUBs(e.g.,USP7 and USP10):FBXW7 and USP10 inhibit signaling,while NEDD4 and USP7 potentiate it.Aberrant activation of the Wnt/β-catenin pathway leads toβ-catenin nuclear translocation and induction of cell proliferation.This pathway is modulated by E3s(e.g.,c-Cbl and RNF43)and DUBs(e.g.,USP9X and USP20):c-Cbl and RNF43 inhibit signaling,while USP9X and USP20 potentiate it.Hippo pathway inactivation permits YAP/TAZ to enter the nucleus and promotes cancer cell metastasis.This pathway is modulated by E3s(e.g.,CRL4^(DCAF1) and SIAH2)and DUBs(e.g.,USP1 and USP21):CRL4^(DCAF1) and SIAH2 inhibit signaling,while USP1 and USP21 potentiate it.Persistent activation of the canonical NF-κB pathway is associated with an inflammatory microenvironment and chemotherapy resistance.This pathway is modulated by E3s(e.g.,TRAF6 and LUBAC)and DUBs(e.g.,A20 and CYLD):A20 and CYLD inhibit signaling,while TRAF6 and LUBAC potentiate it.Targeting these E3s and DUBs provides directions for OSCC drug research.Small-molecule inhibitors such as YCH2823(a USP7 inhibitor),GSK2643943A(a USP20 inhibitor),and HOIPIN-8(a LUBAC inhibitor)have shown promising antitumor activity in preclinical models;PROTAC molecules,by binding to surface sites of target proteins and recruiting E3s,achieve targeted ubiquitination and degradation of proteins insensitive to small-molecule inhibitors,for example,PU7-1-mediated USP7 degradation,offering new strategies to overcome traditional drug limitations.Currently,NX-1607(a Cbl-b inhibitor)has entered phase I clinical trials,with preliminary results confirming its safety and antitumor activity.Future research on aberrant E3s and DUBs in OSCC and the development of highly specific inhibitors will be of great significance for OSCC precision therapy.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102201,U2341244).
文摘An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
文摘Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.
基金supported by the National Natural Science Foundation of China(Grant No.62203362)the Natural Science Basic Research Program of Shaanxi(Grant No.2023-JC-QN-0569)。
文摘A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
文摘Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.
文摘This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters while achieving multi-objective cooperative control for target fencing,network connectivity preservation,collision avoidance,and communication efficiency optimization.Firstly,a differential state observer is constructed to obtain the target's unmeasurable states.Secondly,leveraging swarm selforganization principles,a geometric-constraint-free distributed fencing controller is designed by integrating potential field methods with consensus theory.The controller dynamically adjusts inter-UAV distances via single potential function,enabling coordinated optimization of persistent network connectivity and collision-free motion during target fencing.Thirdly,a dual-threshold ETC mechanism based on velocity consensus deviation and fencing error is proposed,which can be triggered based on task features to dynamically adjust the communication frequency,significantly reduce the communication burden and exclude Zeno behavior.Theoretical analysis demonstrates the stability of closed-loop systems.Multi-scenario simulations show that the proposed method can achieve robust fencing under target maneuverability,partial UAV failures,and communication disturbances.
基金supported by the National Natural Science Foundation of China(U21B2028).
文摘In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively con-sidered. Therefore, an ITCG with field-of-view (FOV) constraints based on biased proportional navigation guidance (PNG) is developed in this paper. The remaining flight time (time-to-go) estimation method is derived considering aerodynamic force and gravity. The number of differential equations is reduced and the integration step is increased by changing the integral variable, which makes it possible to obtain time-to-go through integration. An impact time controller with FOV constraints is proposed by analyzing the influence of the biased term on time-to-go and FOV constraint. Then, numerical simulations are performed to verify the correctness and superiority of the method.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.
基金supported by the National Natural Science Foundation of China(62171447)。
文摘In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments.
文摘Fisheries management worldwide struggles to strike a balance between protecting resources,ensuring fair access to resources and promoting economic effectiveness and stability.The transition to a participatory democracy in South Africa in 1994 resulted in the transformation of government institutions and an extensive process of legislative reform regarding
基金supported by the Key Research and Development Program of the Key R&D Project in Shaanxi Province (Grant No.2021GXLH-01-20)the Open Fund Project of Key Laboratory of Opto-electronic Information Processing,Chinese Academy of Sciences (Grant No.OEIP-O-202001)+2 种基金the China Industry-universityresearch Innovation Fund (Grant No.2021ITA10006)the National Natural Science Foundation of China (Grant No.62105372)Project Pogram of Science and Technology on Micro-system Laboratory (Grant No.6142804231001)。
文摘Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physical characteristics(wavelength and polarization)under different illuminations.A valid fusion strategy is proposed via integrating two separate detection results on color and polarization images.Moreover,a local enhancement and recognition module(LER)is introduced to boost the performance.Based on our built dataset,experimental results show that our method achieves mAPof 87.76%,and12.37%higher than that of color image and 14.68%higher than that of polarization image.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
文摘Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.
基金supported by the National Natural Science Foundation of China(62371382,62071346)the Science,Technology&Innovation Project of Xiong’an New Area(2022XAGG0181)the Special Funds for Creative Research(2022C61540)。
文摘This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.