针对具有不同加工流程信息的多类型零件的单元构建问题,建立了最大化机器利用率和成组效率的多目标单元构建数学规划模型。在此基础上,提出一种改进MOEA/D算法(improved multi-objective evolutionary algorithm based on decomposition...针对具有不同加工流程信息的多类型零件的单元构建问题,建立了最大化机器利用率和成组效率的多目标单元构建数学规划模型。在此基础上,提出一种改进MOEA/D算法(improved multi-objective evolutionary algorithm based on decomposition,IMOEA/D)。剖析模型特征,设计了面向机器分配和零件划分的双层编码策略;为了保证算法迭代的有效性,设计了初始化筛选方法和考虑各制造单元间机器零件平衡性的非法解修复策略;为了增强算法的局部探索能力,设计了基于模拟退火算法的局部搜索方法。实验结果表明所提算法具有优越的性能,获得的Pareto前沿解在覆盖率和Pareto比率两个指标上表现较优,且随着问题规模的扩大,其Pareto前沿优势更加明显。展开更多
文摘针对具有不同加工流程信息的多类型零件的单元构建问题,建立了最大化机器利用率和成组效率的多目标单元构建数学规划模型。在此基础上,提出一种改进MOEA/D算法(improved multi-objective evolutionary algorithm based on decomposition,IMOEA/D)。剖析模型特征,设计了面向机器分配和零件划分的双层编码策略;为了保证算法迭代的有效性,设计了初始化筛选方法和考虑各制造单元间机器零件平衡性的非法解修复策略;为了增强算法的局部探索能力,设计了基于模拟退火算法的局部搜索方法。实验结果表明所提算法具有优越的性能,获得的Pareto前沿解在覆盖率和Pareto比率两个指标上表现较优,且随着问题规模的扩大,其Pareto前沿优势更加明显。