This article proves existence results for singular problem ( - 1)n-px(n)(t) = f(t,x(t),…,x(n-1)(t)), for 0 < t < l,x(i)(0) = 0,i = 1,2.…,p - l,x(i)(1) = 0,i = p,p + 1,…, n - 1. Here the positive Carathedory f...This article proves existence results for singular problem ( - 1)n-px(n)(t) = f(t,x(t),…,x(n-1)(t)), for 0 < t < l,x(i)(0) = 0,i = 1,2.…,p - l,x(i)(1) = 0,i = p,p + 1,…, n - 1. Here the positive Carathedory function f may be singular at the zero value of all its phase variables. The interesting point is that the degrees of some variables in the nonlinear term f(t,x0,x1,…,xn-1) are allowable to be greater than 1. Proofs are based on the Leray-Schauder degree theory and Vitali's convergence theorem. The emphasis in this article is that f depends on all higher-order derivatives. Examples are given to illustrate the main results of this article.展开更多
目的探讨和分析拉格朗日(Joseph Louis Lagrange,1736—1813)重新定义一阶偏微分方程完全积分概念的原因和背景。方法历史分析和文献考证。结果拉格朗日从欧拉的完全积分定义出发,在用常数变易法探讨一阶偏微分方程积分的过程中受到启发...目的探讨和分析拉格朗日(Joseph Louis Lagrange,1736—1813)重新定义一阶偏微分方程完全积分概念的原因和背景。方法历史分析和文献考证。结果拉格朗日从欧拉的完全积分定义出发,在用常数变易法探讨一阶偏微分方程积分的过程中受到启发,萌生了关于积分"完全性"的新思想。随后,他把这种新思想运用于常微分方程,成功解释了奇解现象,受此驱动,提出了一阶偏微分方程完全积分的新定义。结论拉格朗日的完全积分新定义是他追求方程一般性解法的体现和产物。展开更多
对于一阶常微分方程组,将具有导数变量的系数矩阵作三角化分解,使其简化成单位矩阵.应用具有三阶精度、单步自起步、无条件稳定的隐式算法对一阶常微分方程组进行了简化,改进了C a lahan算法.其中逆矩阵与矩阵的乘积,是通过矩阵三角化...对于一阶常微分方程组,将具有导数变量的系数矩阵作三角化分解,使其简化成单位矩阵.应用具有三阶精度、单步自起步、无条件稳定的隐式算法对一阶常微分方程组进行了简化,改进了C a lahan算法.其中逆矩阵与矩阵的乘积,是通过矩阵三角化回代求解计算,从而回避了矩阵求逆.该算法保留了原方程组系数矩阵的稀疏存储方式和稀疏矩阵的运算规则,减少了计算时间和运算过程所需要的存储空间.展开更多
基金Supported by National Natural Sciences Foundation of China(10371006)Foundation for PhD Specialities of Educational Department of China(20050007011).
文摘This article proves existence results for singular problem ( - 1)n-px(n)(t) = f(t,x(t),…,x(n-1)(t)), for 0 < t < l,x(i)(0) = 0,i = 1,2.…,p - l,x(i)(1) = 0,i = p,p + 1,…, n - 1. Here the positive Carathedory function f may be singular at the zero value of all its phase variables. The interesting point is that the degrees of some variables in the nonlinear term f(t,x0,x1,…,xn-1) are allowable to be greater than 1. Proofs are based on the Leray-Schauder degree theory and Vitali's convergence theorem. The emphasis in this article is that f depends on all higher-order derivatives. Examples are given to illustrate the main results of this article.
文摘目的探讨和分析拉格朗日(Joseph Louis Lagrange,1736—1813)重新定义一阶偏微分方程完全积分概念的原因和背景。方法历史分析和文献考证。结果拉格朗日从欧拉的完全积分定义出发,在用常数变易法探讨一阶偏微分方程积分的过程中受到启发,萌生了关于积分"完全性"的新思想。随后,他把这种新思想运用于常微分方程,成功解释了奇解现象,受此驱动,提出了一阶偏微分方程完全积分的新定义。结论拉格朗日的完全积分新定义是他追求方程一般性解法的体现和产物。
文摘对于一阶常微分方程组,将具有导数变量的系数矩阵作三角化分解,使其简化成单位矩阵.应用具有三阶精度、单步自起步、无条件稳定的隐式算法对一阶常微分方程组进行了简化,改进了C a lahan算法.其中逆矩阵与矩阵的乘积,是通过矩阵三角化回代求解计算,从而回避了矩阵求逆.该算法保留了原方程组系数矩阵的稀疏存储方式和稀疏矩阵的运算规则,减少了计算时间和运算过程所需要的存储空间.