期刊文献+

RIGHT FOCAL BOUNDARY VALUE PROBLEM WITH SINGULARITY

RIGHT FOCAL BOUNDARY VALUE PROBLEM WITH SINGULARITY
在线阅读 下载PDF
导出
摘要 This article proves existence results for singular problem ( - 1)n-px(n)(t) = f(t,x(t),…,x(n-1)(t)), for 0 < t < l,x(i)(0) = 0,i = 1,2.…,p - l,x(i)(1) = 0,i = p,p + 1,…, n - 1. Here the positive Carathedory function f may be singular at the zero value of all its phase variables. The interesting point is that the degrees of some variables in the nonlinear term f(t,x0,x1,…,xn-1) are allowable to be greater than 1. Proofs are based on the Leray-Schauder degree theory and Vitali's convergence theorem. The emphasis in this article is that f depends on all higher-order derivatives. Examples are given to illustrate the main results of this article. This article proves existence results for singular problem (-1)^n-px^(n)(t) = f(t,x(t),……,x^(n-1)(t)), for 0 〈 t 〈 1,x^(i)(0) = 0, i = 1,2,……,p- 1,x^(i)(1) = 0, i = p,p + 1,……, n - 1. Here the positive Carathedory function f may be singular at the zero value of all its phase variables. The interesting point is that the degrees of some variables in the nonlinear term f(t, xo,x1,……,xn-1) are allowable to be greater than 1. Proofs are based on the Leray-Schauder degree theory and Vitali's convergence theorem. The emphasis in this article is that f depends on all higher-order derivatives. Examples are given to illustrate the main results of this article.
作者 田玉 葛渭高
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第B12期1064-1076,共13页 Acta Mathematica Scientia
基金 Supported by National Natural Sciences Foundation of China(10371006)Foundation for PhD Specialities of Educational Department of China(20050007011).
关键词 高阶微分方程 边值问题 集中收敛定理 规则化 Right focal Singular higher-order differential equation Regularization Vitali's convergence theorem
作者简介 E-mail: tianyu2992@163.com
  • 相关文献

参考文献15

  • 1Agarwal R P. Boundary Value Problems for Higher Order Differential Equations. Singapore: World Scientific, 1986
  • 2Anderson D, Avery R, Peterson A. Positive solutions to a discrete focal boundary value problem. J Comput Appl Math, 1998, 88: 103-118
  • 3Anderson D R, Davis J R. Multiple solutions and eigenvalues for third-order right focal boundary value problems. J Math Anal Appl, 2002, 267: 135-157
  • 4Anderson D, Avery R I. Multiple positive solutions to a third-order discrete focal boundary value problem. Comput Math Appl, 2001, 42: 333-340
  • 5Wong P J Y, Agarwal R P. Multiple positive solutions of two-point right focal boundary value problems. Math Comput Modelling, 1998, 28: 41-49
  • 6Atici F, Peterson A. Bounds for positive solutions for a focal boundary value problem. Comput Math Appl, 1998, 36: 99-107
  • 7Henderson Johnny, Yin William. Singular (k, n-k) boundary value problems between conjugate and right focal. J Comput Appl Math, 1998, 88: 57-69
  • 8Agarwal R P, O'Regan D. Right focal singular boundary value problems. ZAMM, 1999, 79(6): 363-373
  • 9Agarwal R P, O'Regan D. Multiplicity results for singular conjugate, focal, and (N, P) problems. J Differential Equations, 2001, 170: 142-156
  • 10Agarwal R P, O'Regan D, Lakshmikanam V. Singular (p, n-p) focal and (n, p) higher order boundary value problems. Nonlinear Anal, 2000, 42: 215-228

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部