With completion of the Populus genome sequencing project and the availability of many expressed sequence tags (ESTs) databases in forest trees, attention is now rapidly shifting towards the study of individual genet...With completion of the Populus genome sequencing project and the availability of many expressed sequence tags (ESTs) databases in forest trees, attention is now rapidly shifting towards the study of individual genetic variation in natural populations. The most abundant form of genetic variation in many eukaryotic species is represented by single nucleotide polymorphisms (SNPs), which can account for heritable inter-individual differences in complex phenotypes. Unlike humans, the linkage disequilibrium (LD) rapidly decays within candidate genes in forest trees. Thus, SNPs-based candidate gene association studies are considered to be a most effective approach to dissect the complex quantitative traits in forest trees. The present study demonstrates that LD mapping can be used to identify alleles associated with quantitative traits and suggests that this new approach could be particularly useful for performing breeding programs in forest trees. In this review, we will describe the fundamentals, patterns of SNPs distribution and frequency, summarize recent advances in SNPs discovery and LD and comment on the application of LD in the dissection of complex quantitative traits in forest tress. We also put forward the outlook for future SNPs-based association analysis of quantitative traits in forest trees.展开更多
Nucleotide diversity (pi) and linkage disequilibrium (LD) analysis based on SNP marker could provide a sound basis for choosing an association analysis method. Japanese larch (Larix kaempferi) is an important timber c...Nucleotide diversity (pi) and linkage disequilibrium (LD) analysis based on SNP marker could provide a sound basis for choosing an association analysis method. Japanese larch (Larix kaempferi) is an important timber coniferous tree species for pulping and papermaking, but its high lignin content has significantly restricted it application potential. In this study, the LACCASE gene, that plays an important regulatory role for lignin biosynthesis, was selected as research target. The full-length cDNA and genomic sequences of the encoding LkLAC8 gene were isolated from the LACCASE expressed sequence tags of the Japanese larch transcriptome database using the rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The cDNA was determined to be 1940 bp, with an open reading frame (ORF, 1734 bp) that encoded a protein of 577 AA. This protein contains four highly specific Cu2+ binding sites and 11 glycosylation sites, thus belonging to the LACCASE family. The deduced protein sequence shared an 89% identity with the PtaLAC from Pinus taeda. A real-time PCR analysis showed that the LkLAC8 transcript was expressed predominantly in mature xylem, with moderate levels in the immature xylem, cambium and mature leaves, the lowest in the roots. Lastly, the genomic sequences of LkLAC8 in 40 individuals from six naturally distributed populations of Japanese larch were amplified, and a total of 201 SNPs (103 and 98 mutation types of transition and transversion, respectively) were detected; the frequency of the SNPs was 1/19 bp. Nucleotide diversity among the six populations ranged from 0.0034 to 0.0053, which suggested that there were no significant differences among the populations. The LD analysis showed that the LD level decayed rapidly within the increasing length of the LkLAC8 gene. These results implied that LD mapping and association analysis based on candidate gene may be feasible for the marker-assisted breeding of new germplasms with low lignin in Japanese larch.展开更多
Objectives To study the association of single nucleotide polymorphism (SNP) rs2076185 in chromosome 6p24.1 with the premature coronary artery diseases (PCAD) in Chinese Hun population. Methods A total of 1382 pati...Objectives To study the association of single nucleotide polymorphism (SNP) rs2076185 in chromosome 6p24.1 with the premature coronary artery diseases (PCAD) in Chinese Hun population. Methods A total of 1382 patients were divided into the PCAD group and the control group based on their coronary arteriography (CAG) results. Their SNP rs2076185 were analyzed by the mass-spectrometry. Their allele and genotype frequency in Hardy-Weinberg equilibrium were calculated for assessment. Logistic regression was employed to remove confounding factors and correlate SNP rs2076185 with PCAD. Results The allele and genotype frequencies of the control group were in Hardy-Weinberg equilibrium (P 〉 0.05). The frequencies of allele G of rs2076185 were 54.2% in the PCAD group and 49.5% in the control group. The difference was significant (P = 0.042). The genotype distribution ofrs2076185 of the two groups was also significantly different. The univariate analysis showed that the rs2076185 polymorphisms were associated with the PCAD only in the additive model (OR: 0.828, 95% CI: 0.711-0.964, P = 0.014), and in the dominant model (OR: 0.753, 95% CI: 0.591-0.958, P = 0.021). After removing the confound- ing variables, the rs2076185 polymorphisms was associated with PCAD in the additive model (OR: 0.775, 95% CI: 0.648-0.928, P = 0.005), in the dominant model (OR: 0.698, 95% CI: 0.527-0.925, P = 0.012), and in the recessive model (OR: 0.804, 95% CI: 0.538-0.983, P - 0.038). Conclusion Allele G of rs2076185 reduces the PCAD risks in Chinese Hun population, therefore it could be a coronary artery diseases protective factor in Chinese Hun population.展开更多
Objective: To establish a novel approach for quick and highly efficient verification of human gene imprinting. Methods: A pair of dye-labelled probes, 5' nuclease assay was combined with RT-PCR to determine the ge...Objective: To establish a novel approach for quick and highly efficient verification of human gene imprinting. Methods: A pair of dye-labelled probes, 5' nuclease assay was combined with RT-PCR to determine the genotype of a transcribed single nucleotide polymorphism (SNP) rs705(C>T) of a known imprinted gene, small nuclear ribonucleotide protein N (SNRPN), on both genomic DNA and cDNA of human lym-phoblast cell lines. Results: Allele discrimination showed a clear monoallelic expression pattern of SNRPN, which was confirmed by RT-PCR based restriction fragment length polymorphism (RFLPs). Pedigree analysis verified the paternal origin of expressed allele, which was in consistency with previous report. Conclusion: Transcribed SNP is an ideal marker for detecting gene imprinting by 5' nuclease assay. This approach also may be used to discover differential allele expression of non-imprinted genes, finding out gene cis-acting functional polymorphism.展开更多
Single nucleotide polymorphisms (SNP) of ATP-binding cassette transporter A1 (ABCA1) gene are related to plasma lipid and susceptibility to coronary artery disease (CAD). Our first goal was to screen all 50 codi...Single nucleotide polymorphisms (SNP) of ATP-binding cassette transporter A1 (ABCA1) gene are related to plasma lipid and susceptibility to coronary artery disease (CAD). Our first goal was to screen all 50 coding regions of ABCA1 to find new SNPs. Our second goal was to investigate the frequency distribution of R1587K and M883I polymorphisms of ABCA1 gene, which are the variant occurred most frequently, in Chinese people and to evaluate their association with the CAD phenotype and plasma lipids. Methods: Single-strand conformation polymorphism (SSCP) and DNA sequence were used for confirming new SNP of ABCA1, and restriction fragment length polymorphism (RFLP) were applied for confirming genotypes of R1587K and M883I in 112 CAD cases and 108 healthy people. Results: We discovered a new ABCA1 SNP in Chinese population, which converse 233 amino acids from Methionine to Valine (M233V). This new ABCA1 SNP located in exon7, and might potentially modulate the biological function of lipid metabolism. For R1587K and M883I SNPs, the K allele and I allele frequency was 28.9% and 31.1%, respectively. The K allele at R1587K conferred lower mean values of HDL-C in a dose-dependent manner in both CAD patients and healthy people. However, 883I allele was not associated with plasma lipid level. Neither 1587KK nor 883II associated with increased risk of CAD. Conclusion: Our study finds a potential functional ABCA1 SNPs and revealed K allele of R1587K associated decreased HDL-C level in Chinese population.展开更多
文摘With completion of the Populus genome sequencing project and the availability of many expressed sequence tags (ESTs) databases in forest trees, attention is now rapidly shifting towards the study of individual genetic variation in natural populations. The most abundant form of genetic variation in many eukaryotic species is represented by single nucleotide polymorphisms (SNPs), which can account for heritable inter-individual differences in complex phenotypes. Unlike humans, the linkage disequilibrium (LD) rapidly decays within candidate genes in forest trees. Thus, SNPs-based candidate gene association studies are considered to be a most effective approach to dissect the complex quantitative traits in forest trees. The present study demonstrates that LD mapping can be used to identify alleles associated with quantitative traits and suggests that this new approach could be particularly useful for performing breeding programs in forest trees. In this review, we will describe the fundamentals, patterns of SNPs distribution and frequency, summarize recent advances in SNPs discovery and LD and comment on the application of LD in the dissection of complex quantitative traits in forest tress. We also put forward the outlook for future SNPs-based association analysis of quantitative traits in forest trees.
基金financially supported by the Fundamental Research Funds for the Central Non-profit Research Institution of CAF(RIF2014-06)the Forestry Industry Research special funds for Public Welfare Projects(201504104)
文摘Nucleotide diversity (pi) and linkage disequilibrium (LD) analysis based on SNP marker could provide a sound basis for choosing an association analysis method. Japanese larch (Larix kaempferi) is an important timber coniferous tree species for pulping and papermaking, but its high lignin content has significantly restricted it application potential. In this study, the LACCASE gene, that plays an important regulatory role for lignin biosynthesis, was selected as research target. The full-length cDNA and genomic sequences of the encoding LkLAC8 gene were isolated from the LACCASE expressed sequence tags of the Japanese larch transcriptome database using the rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The cDNA was determined to be 1940 bp, with an open reading frame (ORF, 1734 bp) that encoded a protein of 577 AA. This protein contains four highly specific Cu2+ binding sites and 11 glycosylation sites, thus belonging to the LACCASE family. The deduced protein sequence shared an 89% identity with the PtaLAC from Pinus taeda. A real-time PCR analysis showed that the LkLAC8 transcript was expressed predominantly in mature xylem, with moderate levels in the immature xylem, cambium and mature leaves, the lowest in the roots. Lastly, the genomic sequences of LkLAC8 in 40 individuals from six naturally distributed populations of Japanese larch were amplified, and a total of 201 SNPs (103 and 98 mutation types of transition and transversion, respectively) were detected; the frequency of the SNPs was 1/19 bp. Nucleotide diversity among the six populations ranged from 0.0034 to 0.0053, which suggested that there were no significant differences among the populations. The LD analysis showed that the LD level decayed rapidly within the increasing length of the LkLAC8 gene. These results implied that LD mapping and association analysis based on candidate gene may be feasible for the marker-assisted breeding of new germplasms with low lignin in Japanese larch.
文摘Objectives To study the association of single nucleotide polymorphism (SNP) rs2076185 in chromosome 6p24.1 with the premature coronary artery diseases (PCAD) in Chinese Hun population. Methods A total of 1382 patients were divided into the PCAD group and the control group based on their coronary arteriography (CAG) results. Their SNP rs2076185 were analyzed by the mass-spectrometry. Their allele and genotype frequency in Hardy-Weinberg equilibrium were calculated for assessment. Logistic regression was employed to remove confounding factors and correlate SNP rs2076185 with PCAD. Results The allele and genotype frequencies of the control group were in Hardy-Weinberg equilibrium (P 〉 0.05). The frequencies of allele G of rs2076185 were 54.2% in the PCAD group and 49.5% in the control group. The difference was significant (P = 0.042). The genotype distribution ofrs2076185 of the two groups was also significantly different. The univariate analysis showed that the rs2076185 polymorphisms were associated with the PCAD only in the additive model (OR: 0.828, 95% CI: 0.711-0.964, P = 0.014), and in the dominant model (OR: 0.753, 95% CI: 0.591-0.958, P = 0.021). After removing the confound- ing variables, the rs2076185 polymorphisms was associated with PCAD in the additive model (OR: 0.775, 95% CI: 0.648-0.928, P = 0.005), in the dominant model (OR: 0.698, 95% CI: 0.527-0.925, P = 0.012), and in the recessive model (OR: 0.804, 95% CI: 0.538-0.983, P - 0.038). Conclusion Allele G of rs2076185 reduces the PCAD risks in Chinese Hun population, therefore it could be a coronary artery diseases protective factor in Chinese Hun population.
文摘Objective: To establish a novel approach for quick and highly efficient verification of human gene imprinting. Methods: A pair of dye-labelled probes, 5' nuclease assay was combined with RT-PCR to determine the genotype of a transcribed single nucleotide polymorphism (SNP) rs705(C>T) of a known imprinted gene, small nuclear ribonucleotide protein N (SNRPN), on both genomic DNA and cDNA of human lym-phoblast cell lines. Results: Allele discrimination showed a clear monoallelic expression pattern of SNRPN, which was confirmed by RT-PCR based restriction fragment length polymorphism (RFLPs). Pedigree analysis verified the paternal origin of expressed allele, which was in consistency with previous report. Conclusion: Transcribed SNP is an ideal marker for detecting gene imprinting by 5' nuclease assay. This approach also may be used to discover differential allele expression of non-imprinted genes, finding out gene cis-acting functional polymorphism.
基金Supported by the Natural Scientific Foundation of China (30471929)
文摘Single nucleotide polymorphisms (SNP) of ATP-binding cassette transporter A1 (ABCA1) gene are related to plasma lipid and susceptibility to coronary artery disease (CAD). Our first goal was to screen all 50 coding regions of ABCA1 to find new SNPs. Our second goal was to investigate the frequency distribution of R1587K and M883I polymorphisms of ABCA1 gene, which are the variant occurred most frequently, in Chinese people and to evaluate their association with the CAD phenotype and plasma lipids. Methods: Single-strand conformation polymorphism (SSCP) and DNA sequence were used for confirming new SNP of ABCA1, and restriction fragment length polymorphism (RFLP) were applied for confirming genotypes of R1587K and M883I in 112 CAD cases and 108 healthy people. Results: We discovered a new ABCA1 SNP in Chinese population, which converse 233 amino acids from Methionine to Valine (M233V). This new ABCA1 SNP located in exon7, and might potentially modulate the biological function of lipid metabolism. For R1587K and M883I SNPs, the K allele and I allele frequency was 28.9% and 31.1%, respectively. The K allele at R1587K conferred lower mean values of HDL-C in a dose-dependent manner in both CAD patients and healthy people. However, 883I allele was not associated with plasma lipid level. Neither 1587KK nor 883II associated with increased risk of CAD. Conclusion: Our study finds a potential functional ABCA1 SNPs and revealed K allele of R1587K associated decreased HDL-C level in Chinese population.